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: REDSHIFTS AND BLUESHIFTS OF SPECTRAL LINES

:1 N CAUSED BY SOURCE CORRELATIONS*

'y Emil WOLF'

K} Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
: Received 24 November 1986

D

We recently showed that the spectrum of light emitted by a source depends not only on the spectrum of the source distribution
but also on the degree of spectral coherence of the source fluctuations. In this note we show that with a degree of spectral coherence
of certain kind. specified by two parameters, the spectrum of the emitted light will be displaced relative to the source spectrum.

k The displacement will be either toward the lower or toward the higher frequencies, depending on the choice of the parameters.

1. Introduction line will be redshifted with respect to the spectral line
of the source distribution. The amount of the red-
It has been known for some time that the spectrum shift depends on the spectral correlation length of the
9 of light generally changes on propagation, even in frec source. Th's result has i.mporlam 'WP"Ca"OQS for
& space [1.2]. Such changes are basically duc to corre- astrophysics, some of which were briefly mentioned
lation properties of the source. Recently we derived in ref. [5]. ‘ '
a condition for the normalized spectrum of light gen- In the present note we again consider a source
3 erated by a planar, secondary, quasi-homogeneous whose spectrum consists of a single line with a gaus-
s source to be the same [hroughou[ the far zone and in sian proﬁle but we assume SomeWhat dlffel‘enl cor-
! the source plane [3]. We referred to this condition, relation properties of the source. More specifically
, which is a requirement on the functional form of its we choose a degree of spectral coherence of the source
degree of spectral coherence, as the scaling law and distribution which depends on two parameters rather
we noted that all quasi-homogeneous lambertian than on a single parameter as we have dO“F previ-
sources satisfy this law. We have also shown that when ously. The spectrum of the. emitted light is again
the scaling law is not satisfied the spectrum of the found to be a line with gaussian profile, but this line
X emitted light will, in general, no longer be invariant may be redshifted or bluesh:ftgd relative to the spec-
: on propagation. These theoretical predictions have tral 'lme of the source distribution. depending on the
) been recently verified by experiments [4]. choice of the parameters.
In another recent paper [5] we considered radia-
. tion from three-dimensional, quasi-homogeneous .
b sources and we showed that if the source spectrum 2; The spectrum o.f light produced by a three-
" consists of a line with a gaussian profile and if the dimensional quasi-homogeneous source
Y degree of spectral coherence of the source is appro- . ) C
\ : . . . Let us consider a fluctuating source-distribution
I priately chosen. the spectrum of the emitted light will . finite d in of vol Di
. also consist of a linc with gaussian profile, but this Q(r, 1) occupying ‘,’ 1nite domain of volume £ 1n
A free space and let F(r, 1) denote the field generated
; ) he source. Here r denotes the position vector of a
g * Research supported by the National Science Foundation under by ‘ ¢ wu. ce. Here h(‘ic. _t B Chpl d0
Cirant PHY-8314626 and the Air Force Geophysics Labora- typical point and 11 t_ tm_“' ot (r.tyand Q(r.1)
tory under AFOSR Task 2310G 1. are taken to be analytic signals [6]. They are related
' Also at the Institute of Optics, University of Rochester. by the inhomogenceous wave equation
; 12 0 030-4018/87/$03.50 © Elsevier Science Publishers B.V.
P The U.S. Government Is authorized to reproduce and sell this report. (Nonh-Holland Ph)’SiCS Publishing Division)
b Permission for further reproduction by others must be obtained from
the copyright owner.
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ZiV(r, 1) —c~2(3%/9t3) V(r, )= —4r Q(r, 1) .
(2.1)

We will assume that the statistical ensembles that
characterize the source fluctuations are stationary.
Let Wy(r, r;, w) and W, (r,. r,, w) be the cross-
spectral densities of the source distribution and of
the field distribution respectively. They may be rep-
resented in the form [7]

Wolr, r:, w)=(Us(r,, w) Up(r,,w)>, (2.2a)

Wi(r,ro)=(Utr,,w) Ur,w)), (2.2b)

where {U,(r, w}} and {U;(r, w)} are ensembles of
suitably chosen realizations, angular brackets denote
averages taken over these ensembles and the asterisk
denotes the complex conjugate. As consequence of
the wave equation (2.1) the two cross-spectral dens-
ities may be shown to be related by the equation '
{ref. [7], eq. (3.10); ref. (8a],eq. (2.11)]

(Vi+k?) (P3+K?) Wr,, r, w)
=(4n)* Wy(r,,r,w), (2.3)

where 2 and F$ are the laplacian operators acting
with respect to the coordinates of the points r, and r,
respectively and

k=w/c (24)

1s the wave number associated with the frequency w,
¢ being the speed of light in vacuo.

Using eq. (2.3) one can show that the radiant
intensity J,, (#) generated by the source, i.e. the rate
at which energy is radiated at frequency w per unit
solid angle around a direction specified by a unit
vector u is given by [ref. [8a], eq. (3.9))

J,(u)=(2m)® W —ku, ku, w) , (2.5)
where
Wy(K,. K, w)=(2n)*°jjwa(r,,rz. )
Do
xexp[ —i1(K,r,+ K, r)jdr, d’r, (2.6)

' The definition of the cross-spectral densities employed in refs.
[7} and [8] differ by complex conjugation. Throughout this
note we employ those of ref. [ 7]: hence some of the formulas
we now use [e.g. €q. ( 2.5) below]) differ trivially from the cor-
responding formulas of refs. [8].

s- 1*- -\.."...'\"‘.. .‘u - -_"_-*-1 LA - r.‘ ',.( ottt ettt TR VAN AT T
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is the six-dimensional Fourier transform of W',.

We will restrict our attention to quasi-homogene-
ous sources. For such sources one has, to a good
approximation,

Wolr, r, w)

=Sol(r +r)/2, Y uy(r,—r, . w), (2.7)
where
So(r, w)=Wy(r,r, w)

=(UB(r. @) Uy(r,w)> (2.8)
is the source spectrum and
polrs—r, w)=Wy(r,, r, w)

X [So(r, @)] "2 [So(r2, @)] ~ 172 (2.9)

is the degree of spectia! ¢ ~herence of the source dis-
tribution. Moreover, for each effective frequency w
contained in the source spectrum, S,(r, w) varies
much more slowly with r than g, (r'. w) varies with
r'. With sources of this class eq. (2.5) takes the form
[ref. [8b].eq. (3.11)]

Jo, ()= (21)*S,(0, w)jig(ku, w) (2.10)

where the tilde now denotes three-dimensional Four-
ier transforms.

Let us next assume that the source spectrum is the
same at each source point. We will then write S,(w)
in place of Sy(rw). In this case Sy(0, w)
= DSp(w)/(2n)* and the formula (2.10) becomes (D
again denoting the source volume)

J,(4) =(27)* DS, (w) iy ku, w) . (2.11)

Now the radiant intensity J,,(u) is trivially related
to the spectrum S§='(Ru, w) = Wi{='(Ru, Ru. w) of
the far field by the formula [9]
S{*'(Ru, Ru, w)~J. ,(u)/R> as kR—oco, with the
unit vector # fixed. Hence we obtain at once from eq.
(2.11) the following expression for the spectrum of
the emitted light in the far zone:

S17 (. ) = (21) (DIR?) Sy(w) jiy(ku, w) .
(2.12)

This formula shows that the spectrum S{*°’ (u, w) of
the emitted light in the far zone depends, in general,
not only on the source spectrum S, () but also on

13
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the degree of spectral coherence of the source distri-
bution. It seems worthwhile to note that the dimen-
sions of ${’ and of S, are different. Since jz,, is the
three-dimensional Fourier transform of g, (f,]=L">
(brackets denoting dimensions and L denotes
length). Hence eq. (2.12) implies that
[S17'1=[Sy)L*, in agreement with eq. (2.3).

3. A class of source correlations that generate
lineshifts

In ref. [5] we considered quasi-homogeneous
sources whose spectrum was a line of gaussian profile,

Solw) =Aexp[ — (w—-w)?/285), (dp/wexl),
(3.1)

and whose degree of spectral coherence was also
gaussian viz.,

Ho(r . w)=exp[ —r'?2¢*(w)], (3.2)

where r =|r|. The three-dimensional Fourier
transform of y,, is then given by

A K. w)=[o(w), VZ_n]’exp[ ~iK2a0* ()],
(3.3)

(K=1|K}). In particular we showed that if a(w) is
constant ({ say) such a source will emit light whose
spectrum in the far zone is redshifted with respect to
the source spectrum, the amount of the shift depend-
ing on the effective source correlation length {.

The degrees of spectrai coherence of the form (3.2),
with g{w)=_ (constant) form a one-parameter
family. In this note we will consider quasi-homoge-
neous sources whose degrees of coherence are of a
somewhat more general form. Specifically we assume
that for these sources

fo(K)Y=Bexp| - {(K-K\)*{"], (3.4)

where B, K| and { are positive constants. We have
written j1,( K) rather than ji (K. w) on the left-hand
side of eq. (3.4), because j¢, is now independent of
w. Only two of the three constants in the expression
(3.4) are independent, because the Fourier trans-
form uy(r’) of ji, (K) satisfies the requirement that
#,(0) =1, which is a necessary condition for u,(r’)
to be a correlation coefTicient.

14
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polr')
1.0
0.8}t
0.6F

0.4r

0.2

3 1.0 1.9 2.0 2.5 3.0
Of/-\L/\L Pl

o \/ A4 SN s
v {units 10 *em)

Fig. 1. The behaviour of the correlation coefficient u, (') = {(sin
K. yK,r) exp(—r¥20%), with K, =1.07x10cm ', {=1.5cm
[associated with curve (d) in fig. 2).

It can be shown by a long but straightforward cal-
culation (which we omit because of limitation of
space) that if

K./ (3.5)

the degree of spectral coherence, whose Fourier
transform is given by eq. (3.4). 1s

po(r)=[(sinK,r')/K,r'] exp(—r'?/2{*) (3.6)

and that the constant B in eq. (3.4) is given in terms
of the two other parameters by the formula

B={2(2n)* K} . (3.7)

From now on we will only consider situations for
which the constraint (3.5) holds. Eq. (3.6) then
shows that the degree of spectral coherence has the
form of the sinc function (sin K,r')/K,r’ ,modulated
by the gaussian function exp( —r'*/2{"). The behav-
iour of such a two-parameter correlation coefficient
is shown in fig. 1.

It foltows on substituting from egs. (3.1) and (3.4)
into eq. (2.12) that the spectrum of the light in the
far zone, generated by such a source, is given by

S ()= (2m) (DR ) ABexp| — (W — ) 12687
xexp{ ~ (w -, }?/287] .
(3.8)
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where w = kc as before and
w|=K|(‘. 6|=C/C. (39)

We have written S}’ (w) rather than S{*'(u, w)
on the left-hand side of eq. (3.8) since, because of
the assumed isotropy of the source, S{™’ is now
independent of u. In terms of the parameters w, and

0, the factor B, given by eq. (3.7), becomes
B=c2(2n)¥*wi6, . (3.10)

Let us now consider the expression (3.8) more

closely. For this purpose it is convenient to set
a,=1/263, «a,=1/26%. (3.11)

One then finds after a straightforward calculation that
eq. (3.8) may be expressed in the form

S1* N w)=ACexp[ —(w —-wy)21263,], (3.12)
where
Wy =(Wewo+a,m,)/ (g +a,), (3.13)
'/5(2n=2(O’u+ﬂ’|)=(“5(z))+“/§f)‘ (3.14)
and
C=(2n)*(DB/R?)
x exp{ - [apa,/(ay+a))[(w, —we) ) .
(3.15)

The formula (3.12) shows that the spectrum of the
cmitted light in the far zone is also a line with gaus-
sian profile, but it is not centered on the frequency
w,, of the source spectrum [cf. eq. (3.1)] but rather
on the frequency w,,, given by eq. (3.13). Since
according to egs. (3.11) «, and «, are positive con-
stants onc can readily deduce from the expression
(3.13) that

w, <w, whenw, <w,,
and that
my >w, whenw,>w, .

Since according to eq. (3.9) w,=K,c, this result
implies that if the parameter K, of the degree of spec-
tral coherence (3.6) is smaller than the wavenumber
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ko= w/c associated with the source spectrum Sp(w).
the spectrum S{”’ (w) of the emitted light is red-
shifted with respect to S, (w); and that if K, is greater
than k, it is blueshifted with respect to it. We also sec¢
from eq. (3.14) that /63, > 1/} i.e. that dq, <4,
Hence in either case the spectral line of the emitted
light is narrower than the spectral line of the source
distribution.

4. Examples

To 1llustrate the preceding analysis we consider a
few examples. For simplicity we will choose
J,=40d,. (4.1)

Then, according to eq. (3.11), a,=a, and the
expression (3.12) becomes

Si= () =AC exp[ — (w —)?/53] , (4.2)
where
w=iwstw,), (4.3)

C=(2n)>(DB/R)exp[ — (w, —w,)*/483].  (4.4)

We see that the spectral line of the emitted light is
now centered on the average value @ of the frequen-
ciesw,and w,.

Let us consider the normalized spectrum

x

s‘r’“’(w)=S‘;¢"’(w)/J.S§‘x’(w) dw (4.5)

[¢]

of the emitted light. On substituting from eq. (4.2)
into ¢q. (4.5) and on using eq. (4.3) we obtain the
following expression for s{*' (w):

s U@)= (1184 1)

xexp! —[w—-Hw,+w )] 165} . (4.6)

In fig. 2 curves arc plotted showing the normalized
source spectrum

splm) = (1/6.,\/271 yexpl — (0 —w,)?/263] .

(4.7)
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& %

(urits: 1/Bov/ZW)

i L

319695 3.19700 3.19705 3.19710 3.1971%

{umits: 10" sec™)

Fig. 2. Redshifts and blueshifts of spectral lines caused by source
correlations. The normalized spectrum sy(w) of the source dis-
tribution is a line of gaussian profile [given by eq. (4.7)], with
w,=3.197049x10'* s ' (sodium line of wavelength
4,=5895.924 A) and rms width & =2x10" s*'. Curves
(a) - (d) show the normalized spectra .f the emitted light |lines
with gaussian profiles given by eq. (4.6)], generated by the source
distribution, each with 6,=4, ({=c¢/6,=1.5 cm) and with
W, =we-14x10" s ' (a), w,=w,-0.7x10" s ' (b),
w,=w,+0.7x10"s ' (c)and w, =wy+ 1.4x 10" s~ (d).

taken to be one of the sodium lines, as well as a num-
ber of emitted lines for different values of the param-
eter w, =K,c, of the degree of spectral coherence of
the source; the other parameter, {, is kept fixed and

OPTICS COMMUNICATIONS 1 April 1987

chosen so that §, =c/{ is equal to J,. It is seen that
with increasing values of the difference |w,—w,| the
shift of the emitted spectral {ine also increases. This,
of course, is to be expected since when J, =4, the
shift is given by |@ ~wo | =} |wo—w,].

Acknowledgements

I am obliged to Prof. G.S. Agarwal and to Mr. K.
Kim for helpful discussions and to Mr. A. Gamliel
for carrying out the computations relating to figs. |
and 2.

References

[1] (a) L. Mandel, J. Opt. Soc. Am. 51 (1961) 1342;
(b) L. Mandel and E. Wolf, J. Opt. Soc. Am. 66 (1976) 529.

[2] F. Gori and R. Grella, Optics Comm. 49 (1984) 173.

[3] E. Wolf, Phys. Rev. Lett. 56 (1986) 1370.

[4] G.M. Morris and D. Faklis, Optics Comm. 62 (1987) 5.

[5] E. Wolf, Nature, 326 (1987) 363.

{61 M. Born and E. Wolf, Principles of optics { Pergamon Press,
Oxford and New York, 6th ed., 1980), sec. 10.2.

[7] E. Wolf, J. Opt. Soc. Am. A 3 (1986) 76, eqs. (2.10) and
(3.11).

[8] W.H. Carter and E. Wolf, (a) Optica Acta 28 (1981) 227,
(b) Optica Acta 28 (1981) 245.

[9] E. Wolf, J. Opt. Soc. Am. 68 (1978) 1597, eq. (B16).

" - - - - L - - * -, -
B “_._’-’ N~_$J,\"\J.\¢\ .,_‘-'\. Y




A AN A o A o M W 0 S % 2 0 T T e 2 a4

T O O O O O O OO I I I I oW ot

The U.S. Government Is
Permission for furthe
the copyright owner.

Volume 60, number 6

OPTICS COMMUNICATIONS

gt A AN SaB Gad tal wad A N 8 0on 8. n a0 08 a0 bt b hn N n bk a Rt

authorized to reproduce and sell this report.
r reproduction by others must be obtained from

15 December 1986

RADIATION EFFICIENCY OF PLANAR GAUSSIAN SCHELL-MODEL SOURCES*

Avshalom GAMLIEL

The Institute of Optics, University of Rochester, Rochester, NY 14627, USA

Received 2 September 1986

A general expression is derived for the ratio of the radiated power and the source-integrated intensity for any planar gaussian
Schell-model source. The behavior of this quantity. known as the radiation efficiency of the source, is displayed graphically as a
function of the rms width of the intensity profile and the spatial coherence length of the light distribution across the source. Some
limiting cases are discussed and it is shown that a gaussian-correlaled quasi-homogeneous source may have higher radiation
efficiency than a fully coherent Schell-model source with a gaussian intensity profile (e.g. a single mode laser).

1. Introduction

In the last few years there has been considerable
interest in radiation produced by partially coherent
sources. In particular, the radiation efficiency of
sources of different states of coherence have been
investigated. The radiation efficiency of a source is
defined as the ratio of the total outgoing flux to the
source-integrated intensity. The radiation efficiency
of planar quasi-homogeneous sources was studied by
Carter and Wolf [1,2]. More recently the radiation
efficiency of three-dimensional gaussian Schell-model
sources was calculated, and was compared with the
radiation efficiency of a corresponding coherent
source [3].

In the present paper we extend the analysis of
Carter and Wolf to the important class of planar
gaussian Schell-model sources. We derive an explicit
expression for the radiation efficiency of sources of
this class and present diagrams which show its
dependence on the rms widths of the intensity pro-
file and its degree of coherence. We also examine
homogeneous sources, completely coherent sources,
and quasi-homogeneous sources as limiting cases of
gaussian Schell-model sources. Finally we derive
conditions under which a planar gaussian-correlated
Schell-model source is more efficient than a com-

® Rescarch supported by the Air Force Gieophysics Laboratory
under AFOSR Task 2310G1 and by the Army Rescarch Office.

0030-401/86/$03.50 © Elsevier Science Publishers B.V.

( North-Holland Physics Publishing Division)

SOURCE
\

Fig. |. Illustration of the notation. P represents a field point in
the far zone.

pletely coherent source with a gaussian intensity pro-
file (e.g. a single mode laser).

2, The radiation efficiency of a planar gaussian
Schell-model source

Consider a planar secondary Schell-model source
occupying a domain D in the plane z=0 and radiat-
ing into the half-space z> 0 (see fig. 1). Such a source
is characterized by a cross spectral density function
of the form [4]

Wry,r,, w)

=[I(ry, w) I(r;, w)]"?g(r, —r;. @) . ()

where /(r, w) is the intensity profile and g(r,—r,,

333

R Nau B

Py oy

A Ay B A Ay

p BN -



d\l

Volume 60, number 6

w) is the complex degree of spatial coherence, both
taken at frequency w. The symbols r, and r, are posi-
tion vectors of typical points in the source region D.

It is known that the radiant intensity produced by
a secondary planar source in the direction specified
by a unit vector s is given by {51

J.,(8)=(2nk)2cos20 W(ks,  ,~ks, o). (2)

Here k=w/c (c= speed of light in vacuum) is the
wave number associated with frequency w, 8 is the
angle between the s direction and the normal to the
source plane, and

Wi, frw)=(2n)"* ﬂ W(r, r, o)

xexp[—i(fy'n +f2°r:))dr d?r, (3)

is the four-dimensional spatial Fourier transform of
the cross-spectral density of the light distribution in
the source plane, with f, and f; representing two-
dimensional spatial-frequency vectors.

The total flux emitted by the source into the half-
space z> 0 is given by the expression

P, = f Jo(s) dR2, 4

(2n)

where the symbol (2#) under the integral sign indi-
cates that the integration is taken over the solid angle
subtended by a hemisphere in the half-space 2> 0,
centered at the origin.

We define the radiation efficiency of a source [cf.
ref. 2. eq. (3.11)] by the formula

e,u=¢,,,/jl(r,w)d2r. (5)

The integration in the denominator of eq. (5) is taken
over the source domain D. We show in the Appendix
that ¢, <1 for any planar source.

We will now consider planar Schell-model sources
for which both the intensity distribution and the
degree of spatial coherence are gaussian, i.¢. they have
the form

I(r. w) =1 exp(~r*/2a}), (6a)
and
glri—r, w)=exp{ —(r—r)*20;] . (6b)
334
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Here {,, 6, and o, are positive quantities depending
only on the frequency w (dependence not dis-
played). Such sources are known as gaussian Schell-
model sources.

On substituting from egs. (6) into eq. (1) and tak-
ing the four-dimensional spatial Fourier transform
one can show after a lengthy calculation that [cf. refs.
6 and 7]

Wks,.—ks,.w)

_ h exp( - o0 )
T402m) o (at +287) p 2a?+28H ) )
where

a’=1/(407). p*=1/(20;). (8)

Next if we substitute {rom eq. (7) into eq. (2) we
obtain the following expression for the radiant inten-
sity generated by a source of the type we are
considering:

J“'(S)_4az(az+2ﬂ:) cosf
xex( k?sin%60 ) 9
P\"3ai+285) )

It follows on substituting this expression into eq. (4),
that the total flux at frequency w radiated by a planar
gaussian Schell-model source into the half-space z>0
is given by

k1, J‘ 2
Y da’ (@t +28) ,cos ?
k? 2
Xexp(-ml—m(l—cosﬁ))df). (10)

After some algebraic manipulation this expression
can be reduced to

r
~

¢,u=2na}ll)(l—e*x£(-=ﬁJ.exp(l:)d’)- (1)
®

[\

where

E = [1/2(ka,)? +2/(ka,)?] . (12)

The denominator ineq. (5) with /(r, ) given by eq.
(6a) can also be readily evaluated and we find that
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1.0 1
sw
0.5 4
Ny .
Fig. 2. Radiation efficiency ¢, as a function of ko, and ka,.
j.l(r, w) d’r=2nl,0? . 13)

On substituting from eqs. (11) and (13) intoeq. (5)
we finally obtain the following expression for the
radiation efficiency of a planar gaussian Schell-model
source:

e, =1-D(&)/¢, (14)

where

D& =exp(~¢) [ expir)ar (s)
0

is the Dawson integral [8].

Fig. 2 shows a three-dimensional plot of the radia-
tion efficiency ¢, as a function of kg, and kg, calcu-
lated from eqs. (14) and (12). Fig. 3(a) shows the
behavior of the radiation efficiency as a function of
ka, and fig. 3(b) shows its behavior as a function of
ko, for some selected values of the other parameter.

3. Physical interpretation

As can be seen from eq. (14) the radiation effi-
ciency ¢,, depends on the rms widths of the intensity
profile and of the degree of spatial coherence only
through the parameter £ defined by eq. (12). A con-
sequence of this fact is an equivalence theorem for
the radiation efficiency: there exist an infinite num-
ber of planar gaussian Schell-model sources of differ-
ent rms intensity width ¢, and different spectral
coherence lengths o, which have the same radiation
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Fig. 3. Radiation efficiency ¢, as a function of kg, for selected
values of kg, (a) and as a function of kg, for selected values of
ka, (b)-
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Fig. 4. Contours of equal radiation efficiency as a function of ks,
and ko,
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02

0 . s .
0 05 \ 1.5 2 2.5

Fig. 5. Graphical representation of D(&)/¢, where D(&) is the
Dawson integral (15).

efficiency ¢,,. For a given value of ¢, a class of equiv-
alent sources is represented by a single curve in fig.
4.

We shall now consider a number of limiting cases
that are of special interest.

3.1. The coherent limit (kg ,—o0)

When the source of the class that we are consider-
ing is completely coherent, ko,—»o0 and eq. (12)
implies that ¢ »V/ika,. The expression (14) for the
radiation efficiency then becomes

(,,,:l—D(ﬁka,)/\/ika, . (16)

Since the second term on the right of eq. (16)
approaches zero as ko,— oo (see fig. 5) we see that
the radiation efficiency of a coherent source then
approaches the value unity. The formula (16) applies
10 certain types of lasers operating in their lowest-
order mode.

3.2. A homogeneous Schell-model source (ka,—oo0)

Another interesting limiting case is obtained by
letting ko, oo (with k being fixed), and ko, having
an arbitrary but fixed value. Eq. (6a) reduces to /(r,
w) =1, and if we also make use of eq. (6b) the
expression (1) for the spectral density of the source
becomes
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W(r,, r;, w)=lexp[ - (r, —r;)*/202] . (17)

Since W(r,, r,, ) now depends on r, and r, only
through the difference r, —r,, the source is homoge-
neous. It follows from eq. (12) that as ko,—oo.
é—»kajﬁ and hence the expression (14) for the
radiation efficiency now becomes

D(ka,/./2)
o i (18)

Furthermore, on inspecting eq. (18) and using the
fact that the function D(&)/¢ monotonically decreases
from unity to zero as ¢ increases from zero to infinity
(see fig. 5) we see that for radiation from a homoge-
neous gaussian Schell-model source, ¢, increases
monotonically with increasing ko, and asymptoti-
cally approaches the valu~ unity as ko,—oo0. This
limiting case corresponds 10 the situation where the
field generated by the source coincides with a wave-
front of a plane-wave field that propagates in the
positive z-direction.

€, = 1-

3.3. The quasi-homogeneous limit (a,> a,)

When ko,» ko, a gaussian Schell-model source
reduces to a gaussian correlaled quasi-homogeneous
source with a gaussian intensity profile. The radia-
tion efficiency of such sources was shown by Carter
and Wolf [ 1] to be given by

l—D(koglﬁ) ' (19)
ko,l\/2

It is clear that our expression (14), together with eq.
(12), indeed reduce to eq. (19) in this limiting case.
We may also consider the limiting case of a com-
pletely coherent quasi-homogeneous source by let-
ting ko, — 00, ko ;- oo with ka /ko ,=const.» 1. Since
D(§)/&—0 as {— oo it follows from eq. (19) that in
this limit
€, 1. (20)

Hence the radiation efficiency of a coherent quasi-
homogeneous source is unity.

Finally we deduce from eqs. (16) and (19), if we
recall once again that D(§)/¢ decreases monotoni-
cally with increasing ¢, that when
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( ag)q.hA > 2( ol)coh.

(21)

the radiation efficiency (at frequency ) of a gauss-
ian correlated quasi-homogeneous source will be
greater than that of a completely coherent Schell-
model with gaussian intensity profile. As we have
mentioned above, certain types of [asers operating in
their fowest order mode correspond to a coherent
Schell-model source with a gaussian intensity pro-
file. It is therefore clear from eq. (21) that a gauss-
ian-correlated quasi-homogeneous source may have
higher radiation efficiency than a coherent laser
source emitting radiation of a gaussian intensity
profile.

Appendix
Proofthat €., < 1 for planar Schell-model sources

It was shown in ref. [1] that for quasi-homogene-
ous sources ¢,<1. We will now show that this
inequality holds, in fact, for all planar sources.

We start by showing that W(f, —f, w) > 0 for all real
two-dimensional vectors f(0< |f] <oo). The cross
spectral density W(r,, r,, ) is known to be non-neg-
ative definite (9] i.e.

'”. W(r,r,w)fir) *(r)d*r, d’r, 20, (Al)
with any arbitrary function f{r) for which the double

integral converges. Let us choose f(r) =exp(—if'r).
The inequality (A1) then gives

Jj W(r.r,, w)

xexp[—if-(r,~ry)] d?r, d?r, 20, (A2)
which implies at once [cf. eq. (3)] that
Wiks,,—ks, ,0)20 (0sk|s, |<So0). (A3)

If we substitute eq. (4) into eq. (5) and use the
expression (2) for J,, () we obtain the following for-
mula for the radiation efficiency:

¢, = (2nk)? j cos’OW(ks, .— ks, , w)dR2

2m)
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]
x(fl(r,w)dzr) (A4)
If we next make use of the relation cos?0
dQ2=(1- 5% —s2)""2ds, ds, in eq. (A4) and recall that
the intensity I(r, w) = W(r, r, w), we find that

€, S (2nk)?

52485258
A

x( J. W(r,r, w) dzr)

In view of the inequality (A3) we may replace the
integration over the unit circle in the numerator of
¢q- (AS) by integration over the whole s,, s,-plane.
After doing so we substitute for W(ks,, —ks,, w)
from eq. (3) and interchange the orders of integra-
tions. We then obtain the inequality

Wiks, ,~ks, ,w) ds, ds,

(AS)

Lo

€S ”. Wi(r,,r, w) 8(r, —r,) d?r, d°r,

~ a0

-1
x( J W(r,r, o) dzr) ,

where ¢ is the Dirac delta function. On carrying out
the trivial integration with respect to r,, we finally
obtain the inequality

(A6)

¢wSh, (AT)

valid for all planar sources.
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Mueller matrices and depolarization criteria

R. SIMON
The Institute of Mathematical Sciences, Madras 600 113, India

(Recerved 16 Seprember 1986)

Abstract. The question of whether a given Mucller matrix represents a
deterministic or a non-deterministic system is analvsed by means of a matrix
condition, “The possibility of replacing this matrix condition by a scalar condition
s examined. 1t is shown that this is permissible only for those cases where a
Hermutian matrix constructed from the Mueller matrix is positive semidefinite.

1. Introduction

Several methods have been used in the description of the polarization state of a
wavetield. While the Jones method | 1] and the Poincaré sphere method | 2] are useful
for the description of fully polarized states, the coherency matrix method (3] and the
Mucller Stokes method (4, 5] can handle both partially and fully polarized hight, It
should be noted that all these methods assume the radiation field under consideration
to be an ensemble of plane waves all having the sume wave-vector. Itisonly relatively
recently that a systematic procedure for handling polarization in a beam field has
bheen developed [61. In the following we assume, however, the radiation field is of the
former type.

T'he coherency matrix and the Stokes vector are equivalent, and carry exactly the
same amount of information. However, when the passage of the beam through an
optical system is encountered, the situation becomes quite different: the usual
transformanion law of the coherency matrix via the Jones matrix of the optical
element corresponds to deterministic (non-depolarizing) systems; while the trans-
formation of the Stokes vector through the Mueller matrix corresponds to maore
general systems including non-deterministic (depolarizing) systems, In the deter-
mimstic case the Mucller matrix can be derived from the Jones matrix of the svstem.
A non-deterministic system, on the other hand, has a well-defined Mucller matrix;
but there does not exist a Jones matrix from which it can be derived. This is to be
expected, for the Jones mutrices form a seven-parameter family (the absolute phase
of the Jones matrix should be suppressed inany comparison with the Mueller matrnix
since it does not aftect the transformation of the coherencey matrix, this transform-
ation being quadratic in the Jones matrix), whereas the Mueller matrices form a
sinteen-purimeter Gmily,

Inview of this situation the tollowing question is of much practical interest. How
canone determime whether an experimentally measured Mucelter matnix corresponds
to a deternunistic or a non-determrinistic ssstem? This question was first posed and
exsamined by Barakat |7] 2\ complete answer to this gquestion in the form of a
necessary and suthicient matrix condition was subsequently presented by the present
author 8] Gil and Bernabeu (9] have recently made the interesting claim that this
matrix condiiton can be replaced by a scalar condition. In the present paper we
analvse this clam and show that it is not vahid for all situations,

15
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In § 2 we brietly recall the relationship between the descriptions in terms of the
coherency matrix and i terms of the Stokes vector leading to the matrix condition
{8]. Then we analyse the scalar condition of Gil and Bernabeu and show that it is nof
equivalent to the matrix condition in general. In fact we show that it is only in those
situations where a particular Hermitian matrix constructed from the Mueller matrix
1s positive semidefinite that the scalar condition s equivalent to the matrix condition.
In§ 3 we present a simple example which illustrates these results. Section 4 contains
some concluding remarks.

2. Jones matrix, Mueller matrix and the depolarization criterion
The coherency matrix ¢ describing a polarization state is a 2x 2 complex
Hermitian positive semidebnite matrix:
Py P
p = . 0t=0, =0 (1)
P2 P22
Its transformation by a deterministic (non-imagce-forming) optical system with
Jones matrix J is given by

J: oo =JoJt. (2)

For the purpose of comparison with the Mueller Stokes formalism it is convenient
to associate with every coherency matrix, @, a four-clement column, ®, in the
tollowing one-to-one manner:

‘pll (bn
Py @
d= - " (3
P14 v,
USH b,

The Stokes vector 8 deseribing the same state is related to @ through a simple
numerical matrix 4. We have

S=A4¢, (+)

where

[t can be casily checked that s unitary, except tor a multipheative factor, and we
have

A 125."'. (H)

Since o s non-singular, it follows from (4) that the Stohes vectorand the coherency
Matrix are 1n one-1o-one correspondence, and henee continn adentical imtformation
about the state of the tield, Sinee @ is Herminan S s real, and the positive
semidetiniteness of @ waplies
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Under the action of an optical element, the change in the polarization state is
deseribed throueh a inear transtormation M on S

S8 =MS,
-"nm "I(n -"“2 .‘l(,_‘
Mo, M, M, M,
M,, M, M,, M,
Mo My M, M,

The 44 real matnix Moas called the Mueller matrix of the optical element. In the
special case where the optical element under consideration is deterministic it can be
deseribed cither through a Jones matrix J or a Mueller matrix M, and the two are
related through (1O, 8]

M= KJJ*.1 ', (9

where * indicates complex conjugation and ® denotes the Kronecker matrix
product.

In |8] we detined a matrix N through the elements of M. This is shown as
equation (10) on the following page. ‘This relationship between A and N is clearly
one-to-one. The matrix N is manifestly Hermitian, [ts trace is simply related to M:

Tr(Ny=2M,, an
In the following we will need to use another relationship between M and N:
Tr(NY - TrMMY, (12)

where M denotes the matrix trunspose of Al T'he relationship (12) can easily be
vertfied from the explicit form of N given in (10) by noting that the feft-hand side of
(12) is the sum of the modulus square of all the 16 clements of N, by virtue of the
Hermitian property of N5 swhile the right-hand side is the sum of the squares of the
clements of the real matric V.

In the spirit of (3) we write the 2 x 2 complex Jones matnin J in (2) as a tour-
clement column vector:

o ' (13)

Fven though we use the sume symbaol J for the 2 < 2 matris as for the four-element
calumn, no confusion is expected to arise. For deterministic svstems whose Mueller
matrix s related to J through (9) the matry N s related 1o J ina simple way [R]:

Ny LR w0128, (14)
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Mueller matrices and depolarization criteria 573
Now assume that the optical element is deterministic. Then it has a Jones matrix
J.amd the N matrix of the system s given by (14). Squaring the matrix equation (14)
we have
£ - * *
(NN =S I8
ST (NN, (15)
That is, for deterministic systems
N2=[Te (NN (16)
Conversely, assume that the optical clement satisties (16). That is, from the Mueller
matrix of the given optical clement, we construet the N matrix according to the
prescription (10), and this matrix satisties (16). Then (16) implies that 'Pr(N)] N
1s a projection operator, and hence N can be written in the form (14) for some J. In
other words, the svstern can be deseribed through a Jones matrix and henee s
determimistic. Thus we have the following theorem [8): The necessary and sufficient
condition for an uptical systew weith a given Mueller matrix to be deterministic is that its
N matrix formed through (10y should satisfy the matrix condition (16).

Having established (160) we are ready now to analvse the results of other authors
in the light of this result. The matris condition of Bavakat will not be analysed here
{see [8]). Assume that we have a deterministic svstem. Then € ) is satisfied. Taking
the trace of (16} and using (11} we obtin for such systems

Tr(N =411, (17)
and hence from (12),
Te(MMY=401,. (18)

Thus (18) is 4 necessary condition for a svstem to be deterministic, Henee the result
of Frvand Kattawar { {1 1] is consistent with out matrix condition. Gil and Bernabeu
have clamed that it is also the sufficiency condition. "o see st this is so we have to
examine whether

Tr (N3 - ['Tr(\V))? ' (19)
v cquinvalent to (16). Clearly, there are two cases to be distinguished:

Case 1N s positive semidefinite
In this case it can be seen that (19) s indeed equivalent ta (1) This s most casiy
established by recalliag that N s Herpntiam, and workmg o s dugonad

representation,

- Cuse 20N s not posttice semidefinte

T thes case chodimplies (1 whereas (19 does not mply (163 This too s casihy
seen o the duagonal representation of N

Thus the question s reduced to one of whether theoe enast Maeller matiees
whose N matrices will lan e at beast one negatin e creenyalue, Such Mucller nnatnges
domdecd costianditis precisels for these that the clam ot Ghiland Bernabeu breaks
down Wemve evamples of such natrices m the tollowmg secuon. But here we note
that the scalar conditian (IN), ar equivalenthy (19 does not replace the mannn
condimon (1o view of the fact that the N mateiy s not required to be positing

donit
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3. Example
As a simple example to llustrate our results in the last section, consider the

matrix

M= . {20

Thisis avalid Muocller matnix, The conditions (7) mean that the Stokes vector should
be a ‘ttme-hke’ vector with positive nme-component, Hence any 4 x4 real matrix
which maps every “tume-like’ vector with positive time-compaonent into a vector with
these properties s an aceeptable Muacller mates, A 0 (20) clearly meets this
requirement. Formally | these conditions are adentical to those imposed on proper
Lorentz trunstormation, but now there is no restriction of invariance of the ‘'norm’ of
the vector.
The N matny corresponding to this M s

Tts casily checked that 20) satisties (18) and, cquivalently, (21) satisties (19). Yot at
does not satisty the matriv condition (16) and hence does not represent
deternmunistic svstem. In fact there exists no J matrix from which the M ocan be
derived mthe form (9), This simple-looking Mueller matrix which changes neither
the intensity nor the degree of polirization of any input state is non-deterministic,
for its N matny s not positive senndefinite; it has cigenvadaes (1, 101, 1.

A veranother \im,‘i\' (‘\:HII]\IL' we cite the matrix

[ 000

Lo o o

The reader can venfy that it sepresants a non-deterministic syatem even though it

satisties the sealar condition

4. Concluding remarks

We hive anabvsed the conditions tor a0 Maeller matnin corresponds o a
deternimistic system The necessary and sutlicient conditton tor this is grven by the
matry cqnation Lo In atuanons m which the eigenyvalues of the N matos formed
tromy the ginven Muacller matnsy e all nonenegative, and only under these
circamistances, s the mattes condition ol 63 cqunvafent to the sealar condition (181,

Thus the Muacller matrces divide naturallv mto two disjoint classes: one with

posttiv e semidetimnte Vomatnx and the other waith an N mateix that has at least one

necatve cigenyaluc, s ofb imterest to note that acondition similar to ( 16) s ;|]|‘(-;|d§
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. known i the contest of dynaumical mapping of the density matrix of o quantam-
mechamical svstem [12),
A rebated issue of iterest is the possibility or otherwise, of reahizing the Mucller
- mattin ot a non-determmistie svstem as oan ensemble of Mueller matrices ot
determmntic sostems This problem has been examined ina recent paper of Kim,
Mandel and Walt [ 131
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Relationship between Jones and Mueller matrices for
random media

K. Kim, L. Mandel, and E. Wolf
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The effect of a linear random medium on the state of polarization of the transmitted light is investigated, and the
connection beiween the Stokes vector formalism and the coherence or polarization matrix formalism is discussed.
It is shown that an ensemble of Jones matrices corresponds to the Mueller matrix in general.

1. INTRODUCTION

When light propagates through a linear medium, its polar-
ization properties are usually described either by the Stokes
vector formalism! or by the coherence matrix (also known as
the polarization matrix) that was introduced by Wiener? and
by Wolf.? ‘The effect of many non-image-forming optical
devices on the light is then to transform both the Stokes
vector and the coherence or polarization matrix, so that the
device can be represented by a transformation matrix. This
transformation is usually known as the Mueller matrix?
when it acts on the four-dimensional Stokes vector or as the
Jones matrix® when it acts on the 2 X 2 polarization ma-
trix.t7

Even though there exists a one-to-one correspondence
hetween a polarization matrix and a Stokes vector, the de-
scription of optical systems in terms of Mueller matrices
appears to be applicable to more general situations than
does the description in terms of Jones matrices. This was
already pointed out by Azzam and Bashara8 and Howell®
has shown that some optical devices can be deacribed by
Mueller matrices but not by Jones matrices.

In several recent publications the constraints that must be
satisfied for a Mueller matrix to correspond to a Jones ma-
trix were investigated.' !4 Simon'? and Barakat!® found
nine constraints that are necessary if a Mueller matrix is to
be derivable from a single Jones matrix, and more recently
(iil and Bernabeu!! found a single condition on the trace of
the square of the Mueller matrix. These results apply to
propagation through a deterministic optical device.

On the other hand. some optical systems are nondeermin-
istic, and they can be represented by an ensemble. In what
follows we show that when an ensemble of transfurmations is
introduced to describe certair stochastic non-image-form-
ing optical systems, the two descriptions can be completely
reconciled, and both are equally general. In the special case
when the ensemble reduces to a single realization, the trace
condition of Gil and Bernabeu follows naturally.

In Section 2 we review the properties of polarization ma-
trices and of Stokes vector, and in Section 3 we describe the
mathematical transformations that characterize transmis-
sion through a deterministic device. In Section 4 we intro
duce an ensemble of transformations to represent a random
linear device, and we examine the corresponding relation
between the Jones and Mueller matrices.

0740-32:32/87/0:30433-05802.00

2, THE COHERENCE OR POLARIZATION
MATRIX AND THE STOKES VECTOR

We consider an optical field in the form of a quasi-mono-
chromatic plane wave propagating in some direction charac-
terized by the unit wave vector &, say, the z direction. Let E
be the complex analytic signal representing the transverse
vector field. The field can always be resolved into two
orthogonal components, 1 and 2:

E=E¢, + Ep,, 1)

where ¢,, ¢; are orthogonal unit vectors. ¢, ¢; could be real
unit vectors in the x, y directions, corresponding to orthogo-
nal linear polarizations. However, sometimes it is more
convenient to resolve the field into more general orthogonal
states of elliptic polarization, in which case ¢, ¢; are complex.
In any case the transversality of E is expressed by the condi-
tion

i=12) (2)

xk-¢=0
and the orthonormality of ¢, ¢; by

,j=12). 3)

-

€,

e =4,

If the field is fluctuating, then E,, E; in Eq. (1) are random
variables described by an ensemble, which we shall assume
to be stationary. The 2 X 2 polarization matrix J is the
covariance matrix of the two variates E,, K, and is given by

J,=(EE?*), 4

where () denotes the ensemble average. By definition, J is
Hermitian and nonnegative definite, and its trace is a mea-
sure of the mean light intensity ( E* -E). The effect on J of
changing from one set to another set of base vectors ¢; and €,
is describable by a unitary transformation on oJ. It follows
that there alwavs exists a basis €, ¢, in which J is diagonal,
because every Hermitian matrix can be diagonalized by a
unitary transformation.

The degree of polarization P of the light can be expressed
either in terms of eigenvalues of JJ/ or in terms of the unitary
invariants of J in the form!

P =1 - 4detJ/ATr D" (5)

It follows from either form that 0 < P < 1 and that P =1
when det J = ¢ or, equivalently, when one eigenvalue of o is

€ 1987 Optical Society of America
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zero, so that only one kind of polarization ia present. On the
other hand, P = 0 when the two eigenvalues are equal, and J
is then proportional to the unit matrix. corresponding to an
equal mixture of both polarization components. It may be
shown!% that any polarization matrix J can be uniquely de-
composed into a fully polarized part and a fully unpolarized
part.

The four elements of ¢/ can also be used to construct four
real parameters known as the Stokes parameters,! which are
given by

S, = (E\E*) +(EE*),
= EE,")—(EQE‘,H
L= (R E + (EE ™,
= BB = (BB

wn n
|

2l

(6

r

and also represent the state of polarization of the field. The
four parameters are often considered to be the components
of a four-vector S, known as the Stokes vector. In terms of
the components of S the degree of polarization is then given
by
P=(82+ 82+ 808, N
Anolher connection hetween the Stokes parameters S, (u
=0, 1, 2, 3) and the polarization matrix .J hecomes apparent
it we express J as a linear combination of the four linearly
independent 2 X 2 Pauli spin matrices

R
UM
(-1 0

(- R
Tl H}

[0 1

L1 ©
fo i

-t O

which form a complete set for the representation of any 2 X 2
Then we find that

o
o' =

(8)

matrix

(e =0, 1,2, (9)

where summation on repeated indices is understood. Tt
follows that the Stokes parameters are simply twice the
coefficients in the expansion of the polarization matrix J in
terms of Pauli matrices.

This immediately leads to another expression for §,. Let
us multiply both sides of ¥qg. (9) on the right by another
Pauli spin matrix "' (¢ = 0, 1, 2, 3} and take the trace on
hoth sides. Then we obtain

1 (RN ] " 1) ()
Trffa'’| = ) S, et
Recalling that the product of two different Pauli matrices
aelds one of the three P matrices oV st ot which s
tracetess, we see that the only nonvamushing contribution
covirs when g = v which cave 1 trace cquals 2, and we
obtaim finallv
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S, =Tela"} =d,0,%  (u=0.1,23), (10

when the summation convention is applied.

3. TRANSMISSION THROUGH A LINEAR
OPTICAL SYSTEM

When the light beam is passed through some non-image-
forming optical device such that it enters and emerges as a
plane wave, the new field vector E’, given by

E' =E'¢ + E)e,, (1)

has components E;’, Ey’ that are often linearly related to the
old components E,, E». For brevity we shall henceforth
refer to this device as a filter. We may then represent the
filter by the 2 X 2 transformation matrix T\ usually known as
the Jones matrix,” such that

E'=T,E, (,J=12), (12)

‘ted indices is again understood.
For the moment we take the vi.r  nts of T to have definite
values, i.e., they are not random. . xplicit forms of T for
certain common filters, such as a compensator or phase
plate, a differential absorber, an optical rotator, and a polar-
izer, have been given.'6:1

Let us now examine how the polarization matrix J and the
Stokes vector S are affected under this transformation. We
find from the definitions [Eqs. (4) and (12)] that the new
polarization matrix J/’ is given by

where summation on rep.

Jl’]/ = (E,/E]I‘)
= T\(EET,*
= Tlm"mn ny 13
or, in matrix form,
J = TJTT, (14)

where 7™ is the Hermitian adjoint of T. Hence J’ is related
to o/ by a similarity transformation involving the same ma-
trix T that transforms E to E’. However, as we show below,
there exist linear filters whose effects are describable not by
transformation (12) or (14) but only by an ensemble of such
transformations.”

[.et us now examine the corresponding transformation
rule for the Stokes vector 8. Under any linear transforma-
tion the new Stakes vector 8§ is related to the old one by
M S

S, =MS (uor=0,1,2,3). (15)

The 1 X 4 transformation matrix M,, is known as the
Mueller matrix.* We may readily obtain the form of M,
when the field vector obeys the transformation Eq. (12) by
making use of Egs (10) and (14). We then find that
S, = el ot
=Tr|TJT o' (16a)
or, in component form,

(t6h)

We now substitute for J in Eg. (15) from Eq. (9) and obtain
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’ l v
S/=3 Tr[To"' TS, an
Comparison with Eq. (15 shows that in this case the Mueller
matrix is given by

M, = ) THToT'6%] = | Tr{oW ToT"]

=, ToTen'om®a,", (18)
and it is evidently related to the 2 X 2 Jones matrix.

It is apparent from Eq. (18) that to every Jones matrix 7'
there corresponds a Mueller matrix M, but the converse is
not necessarily true. As we show below, there are physically
realizable but nondeterministic linear filters whose effect on
the polarization matrix is not expressible in the form of Eq.
(14), although the Stokes vector transforms as in Eq. (15).
In particular, under the simiiarity transformation (14), an
initially polarized light beam always remains fully polarized,
although the degree of polarization of a partially polarized
beam can increase or decrease on transmission through a
linear filter.

In order to show this let us choose the polarization basis in
which the original polarization matrix J is diagonal. If the
light is fully polarized, only one eigenvalue, say I,, is nonzero,
and -/ must be of the form

Jmn = llbmlbnl' (19)

Needless to say, under these conditions det J = 0, and from
Eq. (5} it follows that the degree of polarization P = 1. Let
us now calculate the degree of polarization P’ of the light
beain emerging from the linear filter. With the help of Eq.
(19) we have, from Eq. (13),

J;) =T, T *I,

) ]

so that
detJ = I(Ty Ty * T Ty* = Ty Ty * T Tyy*) = 0. (20)

Hence /¥ = 1, which implies that polarized light remains
polarized after passing through any linear filter whose effect
is described by Eq. (12) or (14). Evidently, a depolarizing
filter is excluded from this category. However, the action of
adepolarizing filter on the Stokes vector S is still describable
by a transformation of the form shown in Eq. (15), although
the actual transformation matrix M is then no longer given
by Eq. (18). For example, for the fully polarized light de-
scribed by Eq. (19) the Stokes vector S has components (I,
0.0, 1), whereas the Stokes vector for unpolarized light is
always of the form (1, 0, 0, 0). The 4 X 4 tra sformation
matrix of the form

K a9 b g
0 a b oo

M= 0 a by O @
0 g h, U

converts (/,, 0, 0, /;) into (K/,, 0. 0, 0) and therefore repre-
sents a fully depolarizing filter device. The extra degrees of
freedom available in M permit this possibility, whereas there
is no 2 X 2 transformation matrix T to represent this filter.
In this sense the Mueller transformation matrix appears to
he of more general applicability than the Jones matrix.
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By using Eq. (18) we may readily derive the simple trace
condition on the Mueller matrix that has been shown to
apply to any nondepolarizing optical system.!'* If MT de-
notes the transpose of M, then from Eq. (18)

TrM™M) = MM,
= ; Tr|To"' T " Tr[To' ' T" 0], (22)
where we have made use of the fact that the trace is invariant

under cyclic permutation of factors. With the help of the
general matrix rules

Tr|A]Tr[B} = Tr{A @ B) (23)
and
(A® B){C® D)= AC® BD, (24)

where ® denotes the direct product, we can reexpress Eq.
(22) in the form

Te(MTM) = 41 Te{To " T o™ @ T T"')]

e

L TT[(TU”) ® Tﬂlv))('rVU(u) ® ’l"?o,\ui)l

Tr[(T ® TN ® a"'NT' ® T (6™ @ ')

-

(25)

From the explicit form [Egs. (8)] of the Pauli matrices we
find that

PR q(l') = R (26)

-0 O
[ ]

1
2

[ =R
—_ O O O

00

and this matrix commutes with any 4 X 4 matrix of the form
T ® T. Moreover, its square is the unit 4 X 4 matrix. It
follows that

THM™M) = Tr{(T® TUT & TY|
and, with the help of Eqgs. (24) and (23),
TrM™™) =Te(TT ' ® TTH

= [T(TTH]%. (27)
But from Eq. (18) we have
Mg, = W THTTY (28)
s0 that finally
Tr(MM') = 4M,,%. (29)

This is the necessary and sufficient condition found by Gil
and Bernabeu' for a Mueller matrix to represent a nonde-
polarizing optical system. We see that it holds for every
deterministic optical system described by Eq. (12).

4. REPRESENTATION OF A FILTER BY AN
ENSEMBLE

So far we have considered only deterministic optical sys-
tems. But in some situations, for example when light is
passed through the atmosphere, the svstem is no longer
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deterministic and must be described by an ensemble of fil-
ters.® We shall represent a typical element of the ensemble
by a 2 X 2 Jones transformation matrix 7 and assume that
it occurs with probability p.. The action of the ensemble of
filters on the incident light E is to generate another ensem-
ble of vector fields E’**) generally with different polarization
states, such that

E/'=T,“E, (30)

We emphasize that the new ensemble associated with the
filter is in addition to the ensemble formed by the various
realizations of the incident field. In constructing the ele-
ments J,;” of the polarization matrix of the light that has
passed through the optical system, we then need to average
over the e ensemble also. Thus we obtain from Eqs. (13) and
(30)

Ju' = Z pv(Ex,W)E;'(eh)

= Z prTxm("'JmnTn;‘P" (31)
L4
or

=N\ (p, T JTN = (TJTM, (32)
where (), is a shorthand notation for the average over the ¢
ensemble. This result should be compared with Eq. (14).
In this case J’ can no longer be related to J by a similarity
transformation, as for a single realization of the ensemble.

Moreover, because of the e ensemble, it is no longer true
that polarized light passing through the optical system re-
mains fully polarized. Thus, if J is given by Eq. (19) as
before, when we calculate the determinant of J’ from Eq.
(32), we find in place of Eq. (20)

det J’' = lll<T”h')’r”(n'it)',<Tﬂ(v')7'2l1rlt>l.
_- (T-_“w)T““l)‘>‘.<T“(”T3|“J"),»I, (33)

where (). again denotes the average over the filter ensemble.
Iu general, det J’ is not zero, so that P » 1 and the emerging
light is no longer fully polarized. It follows that our ensem-
ble representation of the filter can now accommodate a de-
polarizing filter also.

Next we calculate the effect of our optical system on the
Stokes vector 8. By going through the same procedure as in
the derivation leading to Egs. (17) and (18), we now find that
the Mueller transformation matrix is given by

M T N paw g (34)

¥

_ 1
e é
or more explicitly in component form by

M“, = ;(1‘,,,.“}'7‘,41-"".”) a lui" lr). (35)

emn Y

If we denote the ensemble average of the product of two
Jones matrices by

T = (T

npgm

h-)T,’mt.n\)“ (36)

np

then Eq. (35) becomes

Kim et al.

M = l :Tnpqma (u)" (v). (37)

w = g ym  Ypq
When Eq. (18) is rewritten with ‘T ,,,m in place of the prod-
uct, T,y Tym' because the ensemble has only a single mem-
ber, then Egs. (18) and (37) become formally identical.
Similarly, if we make the same substitutions in Eqs. (13) and
(31), the two equations become indistinguishable. We have
therefore demonstrated a one-to-one correspondence be-
tween the transformation laws for the Jones and the Mueller
matrices and have shown that T,,,» completely determines
both transformations. Any single realization of the Jones
matrix Tt is clearly inadequate to describe the optical sys-
tem. The ensemble-average product is needed for the calcu-
lation of quantities such as J,; that are of the second order in
the field.

Finally, we consider the problem of inverting Eq. (37), or
deriving T ,,pym from the Mueller matrix M,,. For this pur-
pose we use Eq. (37) to construct the following sum over the
indices u,

e o 1l 1 . ) . Aule () (ve
Muﬂal/“ Okt - Tu;«,-'ncmn 7, Toy ki . (38)

with summation over repeated indices again understood.
But, from definition (8),
@', = 26,5 (39)

mn mi%nyp

When this result is used twice in Eq. (38), we arrive at

1
0 M,...G.,m‘“um' = 1]“,' (40)

which is the inverse of Eq. (37) and shows explicitly that
Tapgm = ATnp'Tym'"), is completely determined by the
Mueller matrix M,,. However, there is no unique procedure
for constructing the ensemble of Jones matrices T,,'", ex-
cept in the degenerate case, when Eq. (29) holds and the
ensemble reduces to a single realization.
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Non-cosmological redshifts
of spectral lines

Emil Wolf

Department of Physics and Astronomy, and Institute of Optics,
University of Rochester, Rochester, New York 14627, USA

We showed in a recent report' (see also refs 2-4) that the normal-
ized spectrum of light will, in general, change on propagation in
free space. We also showed that the normalized spectrum of light
emitted by a source of a well-defined class will, however, be the
same throughout the far zone if the degree of spectral coherence
of the source satisfies a certain scaling law. The usual thermal
sources appear to be of this kind. These theoretical predictions
were subsequently verified by experiments®. Here, we demonstrate
that under certain circumstances the modification of the normal-
ized spectrum of the emitted light caused by the correlations
between the source fluctuations within the source region can pro-
duce redshifts of spectral fines in the emitted light. Our results
suggest a possible explanation of various puzzling features of the
spectra of some stellar objects, particularly quasars.

To explain why source correlations influence the spectrum of
the emitted light consider a very simple example, Suppose that
two point sources P and P, huve identical spectra Sylw) and
that measurements on the emitted field are made at some point
P. The sources are assumed at 1est relative to an observer at P
Assuming that the source fluctuations can be described by a
stationary ensemble, the tield at P may be characterized by an
ensemble { V( P, w)} of frequency-dependent realizations”, each
of the form

R R,

o

e ! [ ‘
VP w): (P wl - + QP @) — (n
w): QP w R, QP R,

where {Q(P,, w}}, (4 - 1,2), characierize the strengths of the
two fluctuating point sources, R, and R, are the distances from
P, to P and from P. to P respectively (see Fig. 1) and k = w/¢,
¢ being the speed of light in vacun. For simplicity polarization
etfects are ignored and hence V and Q are taken to be scalars
The spectrum of the light at P is then given by

SUtP o) =(VIIP wiV(P w) (2)
where the uasterisk denotes the complex conjugate and the

angular hruckets denote the ensemble average. On substituting
from equation {1} into equation (2) and using the fact that

QMNP wIQP,w)) - {QMP wlQP w)y Sylw) ()

the following expression is obtained for the spectrum of the
emitted light at P:

1 1
S 0P W) (R';‘ Rf.>Sl"(w)

U,l(l-’ Ko
L WLE L P e [EGS ] 14y
’ RK. )

Here
“,_,Il’,, Plowt QNP aiQUPs ) (5

15 the so-called Crossspectral density of the source Ructuations
and ¢ denotes the complex conjugite

The formula (&) shows that the spectrum Syt P w) is,
petieral. not just proportional to 80w but s maditied by the
correlation, charactenized by W 0P P ) between the Huctu-
ations of the two source strengths QEP L a and QP m). Only
mosome very special cases, for example, when the source fluctu.
attons are uncortelated { W, PP cod 0] waill S, (P w) be
proportional 10 St Hence, in general, the spectrum of the
heht penerated by two posat sources depends not onlv on their

spectra but atso on the oorrelation between the fluctuations of
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their strengths.

A generalization of the elementary formula (4) for radiation
from three-dimensional steady-state (that is, statistically station-
ary) sources of any state of coherence is known'. Of special
interest in the present context is the form that the formula takes
when the source has the same normalized spectrum s, (w i,
(]’;,r solw) dw = 1) at each point in the source region and has a
degree of spectral coherence' (appropriately normalized cross-
spectral density} u,{r,, r:, @) that depends on the position vec-
tors r, and r, of any source points P, and P, only through their
difference r, —r,. If, in addition, for cach treguency that sig-
nificantly contributes to the source spectrum, the spectral corre-
lation length {the effective spatial width Ar| of (e, wi] is
small compared to the linear dimensions of the source, the
normalized spectrum " (u, w) of the emitted light in the fur
zone, in a direction specified by a unit vector w, becomes (see
equation {3.11) of ref. $)

Solw)potke, w)

sy, w) =2 (6)

{ solwhigtke, w) dw
where gi,(K, w) is the three-dimensional spatial Fourier trans-
form of the degree of spectral coherence p,(rw) -
molr,-r, w).

Let us now choose as the normalized source spectrum s, (w!
a spectral fine with a gaussian profile

1 . s
Splus) s;;z»;cxp[*(w" W,V /287 18 wy) (7
and suppose that at cach effective frequency w, the source
correlation decreases with the separation Ir'l -ir, - r,j of uny two
SOUTCE Points in a gaussian manner. that s

polt’ @l expl - ri/2aliw)) (8

On taking the Fourier transform of equation (8) and substituting
the resulting expression into equation (6) we obtain the follow-
ing expression for the normalized spectrum of the emitted light
in the fur zone (see equation (3.21) of rel. 8

Solw \_{r; (w) exp_( —;[ ke, (w) I}

VO te) - (9}

L‘,"x;,’(w Yo, lw) exp {~{ko (o W dw

[

Here, s\"'(w) is wrilten in place of «\''(u, @), because the
spectrum of the far field is now independent of u, as a con-
sequence of the assumed isotropy of u, {see equation (%))

The formula (9) shows that the spectrum of the emitted light
in the far zone depends both on the spectrum of the source
fluctuations and on the manner in which the effective source
correlation length o, (w) depends on the frequency w.

Let us consider two particular cases. (1) Suppose tist that
o, w)isindependent of w. Letting { denote the (now constant)
value of o, and with s,(w) given by cquation (7), one can
readily evaluate the integral in the denominator on the right of
cquation (9) and one then finds that

a w,, : B
SV w ﬁ\2’{6\;\[ (m “)/3(5/0)] (10

where
a l.(h) (il
R
and
| B
- {11hy
A ¢

When the source is ettectively spatially incoherent, { + 0. Then
according to equation (11 A-» v and o 1 and it follows from
equattons L0y and (7 that in this case

3wy e ten) o2

Hence, 1 the limiting case of a completely incoherent source
of the class that s considered here, the normalized spectrum ot
the emitted hight in the tar zone is identical with the normalized
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b )
' spectrum of the source fluctuations. Fig.2 Spectrs s\ '(w) of the far ﬁeld from sources with spectrum
However, when the source fluctuations are correlated over an solw) = (8V2m) "exp| -(w - w,)?/28°] and degree of spcftml
. effective distance { >0, equation (10) shows that the spectrum coherence Ko(r Cw) —cwl—"’{}{ ') with wo=3.887x10"s '
& sy(w), although it is also a line with a gaussian profile, is (A, =4,861 A) and & = 9.57x 105", for several sclected values
\- centred at a lower frequency wh = wy/ a’ < w,. Hence the source of the effective source-correlution length {. The solid curve ({ »0)
K. correlations give rise to a spectral line 5y"'(w) that is redshifted also represents the source spectrum so(w).
o with respect to the spectral line produced by the completely
N spatially incoherent source with the source spectrum s, (w). The for the spectrum of the light emitted by a planar secondary
shifted line is narrower, having root-mean-square width é'= source of a well-defined class to have certain invariance
A 8/a < & and has a-times greater height. Examples of spectra properties on propagation. It will be shown in another publica-
-:;- of light in the far zone, produced by several sources which emit tion (J. T. Foley and E. Wolf, in preparation) that for three-
~ the same spectral line but which have different correlation dimensional primary sources of an analogous class, whose
$ lengths are shown in Fig. 2. From the formula (10) one can degree of coherence satisfies this law, the spectrum of the emitted
readily deduce that the relative shift of the line, namely, light has similar invariance properties. We conjecture that the
Y o ! usual thermal sources obey such a scaling law.
g0 0 _—"_‘-—" a3 Now briefly consider the question of a physical mechanism
Ao Wy for producing source carrelations. Such correlations must clearly
\ (A =27¢/ wy, b= 2mc/ w)) is given by be manifestations of some cooperative phenomena. At the

atomic leve) possible candidates may perhaps be superradiance
and superfluorescence’®. An effect of this kind was first predicted
by Dicke in 1954 when he showed'? that under certain circum-

e
| = A - c {

D) e s - . stances energy from excited atoms may be released cooperatively
0y whnhuhhshows thalt in this case "I',e Fedslhlft |:crea;es£uadrat|cgc,lly in a much shorter time than the natural lifetime of the excited
\\}/‘u the spectra source-co_rre/anor;‘ ength £ (2) Next consider states of the atoms and with much larger emission intensity than
4 the situation when o, (w) = a/w where a is a positive constant. would be obtained were the atoms radiating independently.
The expression (9) for the normalized spectrum of the emitted
hght in the far zone now reduces to
u, 1.0¢
- “’( )= ,4._‘5&1@, (15)
: ju [SQ(“))/‘-" ]dw
o] Note that this expression is independent of the value of the O'GA-
constant a. N
When s, {w) is a line with a gaussian profile, given by equation [
(7), the spectrum s{"'(w), given by equation (15) is no longer N
:, strictly gaussian but it can be closely approximated by a gaussian «
and can be shown to be redshifted with respect to so(w) by the =
, relative amount 3 0.491
N - €>
. A »
c=3 ). (16)
o wy 0.2f .
- An example of this situation is illustrated in Fig. 3.
. . . M
N This case [0, (w) = a/ w] is of special interest because, accord- ) . . >
n it)g to equation (8), the degree of spectral coherence is now ot 3.7 38 39 20 Y
D given by .
"\ , s R wllo”"s )
" molr, w)=exp[--(kr'V'/2(a/ )], an
that is, it has the functional form Fig. 3 The spectrum 5" 'tw) of the |far ficld from a source with
. , saurce  spectrum slw) (AV2m) Texp| (e w,)/287 and
ol w) A (R w/e dm/A) (1K} degree of spectral cohierence (e m) expl (he')'/2az0)’)
. . (a  nn wrhitrary  constants, with  w,,  VERTx 10" 8 ' (A,
) Thus the degree of spectial cohierence of the source distnibution annl Ay and B8 987 %10« 'L The source spectium y,tmd 1
. now satishies the three dimeasonal unalogue of i requirement shown for comparison. Note that u,(¥, w) now obeys the scahng
o tcalled the scaling law) derived in ref. 1, as a sufficient condition law.
32
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However not enough s known at present about the coherence
properies of large three-dimenssonal systems of this kind to
muhe 1t possible to determine whether superradiance and super-
fluorescence might involve corretations that could give rise to
spectral line shifts.

There is, however, quite « ditferent mechanism, which can be
desenibed at the macroscopiv level, and which canaimitate etfects
of seurce correlations: namely effecs of correlations between
the refractive index at pairs of pointsan g spatially random but
statistically homogencous, tme-invarant medium. I a4 wave
duninates such a mediang, say a dilute gas, then, as s well
known, the medium acts as a secondary source, namely as a set
of osallating charges set in mouon by the incident wave. The
secondary waves produced by the oscillating charges then com-
bine with cach other and with the incident wave and generate
the scattered ticld. 1t the gas s not too dilute the collective
response of the microscopic charges to the incident field can be
described by miacroscopic patameters such as the dielectric
susceptibitity an the refractive mdex. Now within the accuracy
of the first Barn approximation the basic equation for scattering
i~ of the same form as the basic equation for radigtion from
primary sources, the “egquivalent source’ for scattering being the
product of the scattering potential (which is a simple function
of the refractive index) and of the incident wave. This correspon-
dence clearly implies that our results regarding the effects of
source correlations on the spectrum of the emitted light must
have analogues regarding the etfects of a spatially random
medium with correlated refractive index distribution on the
spectrum of the light that iv scattered by it. This topic will be
discussed eisewhere.

I et us now consider some implications of this analysis. Using
equation 14}, the spectrad ine 1 g, 2, produced by the source
whense correlation length { - A, is readily found to have a redshifi
given by = 0.0241 with respect to the source spectrum. It is of
interest to note that it an observer detected such a redshift
unaware of its true ongin and interpreted it on the basis of the
Dappler shift formula »/¢ - AA/A, 2 he would incorrectly
conclude that the source was receeding from him with a speed
v 00241c- 7230 km s "
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It seems worthwhile to note that there is a maximum line shift
that can be produced by source correlations. This can be seen
from the basic formula (6) which indicates that s\ (u, w) - 0
when s,(w) =0, implying that the spectrum of the far tield can
only contain those frequencies that are already present in the
source spectrum. Consequently the maximum attainable
frequency shift of the line cannot exceed its etfective frequency
range. However, any frequency contribution from the source
spectrum to the normalized spectrum of the far ficld can be
greatly magnified or greatly reduced, as is evident from equation
(6) and from kg 2.

We have mainly considered eflects of source correfations
under circumstances when the source spectrum consists of a
single line and when the degree of spectral coherence u,, that
chatacterizes the source correlations depends on a single para
meter. Preliminary calculations show that with a suitably chosen
i, which depends on a larger number of parameters, redshifts
of several lines may be produced, all of which will have approxi-
mately the same z-values.

In this article we have considered redshifts of spectral lines.
However, it is not difticult to specify source correlations which
will produce blueshifts. Examples of this kind are given in a
forthcoming publication''.

It seems plausibie that the mechanism discussed in this article
may be responsible for some of the so far unexplained features
of quasar spectra, including line asymmetries and small differ-
ences in the ohserved redshifts of different lines. In this connec:
tion it is of interest to recall that the role of coherence in the
emission of radiation from quasars was steessed by Hoyle,
Burbidge and Sargent in a well-known article®”.

I thank Mr A. Gamlici and Mr K. Kim for carrying out
computations relating to the analysis presented in this article.
The fact that scattering can also produce shifts of spectral lines
was noted independently by Professor Franco Gori, who in-
formed me of this result when commenting on aa carly version
of the manuscript of this article. This investigation was
supported by the NSE and by the US Air Force Geophysical
Laboratory.
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Red Shifts and Blue Shifts of Spectral Lines Emitted by Two Correlated Sources

Emil Wolf @

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 24 February 1987)

I1 has recently been shown theoretically that correlations between fluctuations of the source distribu-
tion at different source points can produce red shifts or blue shifts of emitted spectral lines. To facilitate
experimental demonstration of this effect a simple example is analyzed. It involves only two small ap-
propriately correlated sources and brings out the essential physical features of this new phenomenon.

PACS numbers 42.68 Hf, 07.65.—b, 42.10.Mg

1 showed not long ago that the spectrum of light pro- The main features of this theoretical prediction have
duced by a fluctuating source depends not only on the been confirmed by Bocko. Douglass, and Knox, using
source spectrum but also on the correlation that may ex- acoustical rather than optical sources. An account of
ist between the source fluctuations at different points their experiments is given in the accompanying Letter.?
within the domain occupied by the source.! This result Let us consider two small fluctuating sources located

was recently confirmed experimentally.? [ also showed at points Py and P,. I assume that the fluctuations are
that under certain circumstances source correlations may  statistically stationary. Let {Q(P), @)} and {Q(Pr,0)}
produce red shifts or blue shifts of spectral lines in the be the ensembles that represent the source fluctuations®

emitted radiation.>* This prediction has obviously im- at frequency w. Furthermore, let {U(P.w)} be the en-

portant implications, particularly for astronomy, and it is semble that represents the field at point P generated by

therefore desirable to verify it also by experiment. the two sources (Fig. 1). Each realization U(P,w) may
In this Letter 1 analyze theoretically one of the sim- then be expressed in the form’

plest systems thatl will generzliltc spectral shifts by this R, .

mechanism; namely, two small correlated sources, with - e e

identical spectra consisting of a single line of Gaussian UtP.0) =0(Pw) R\ +o(Pr0) Ry ' W

profile. I show thai with an appropriate choice of the

correlation, the spectrum of the emitted radiation will ~ Where Ry and R; are the distances from P, to P and
also consist of a single line with a Gaussian profile; how- from P to P, respectively, and k = w/c, c being the speed
ever, this emitted line will be red shifted or blue shifted ~ Of light in free space. The spectrum of the field at the
with respect to the spectral line that would be produced point P is given by

if the sources were un_correla.ted, the nature of the shift Sy(P.@) =" (Pw)U(P,0)), )
depending on the choice of one of the parameters that

specifies the exact form of the correlation coefficie where the angular brackets denote ensemble average.

nt
—1 On substitution from Eq. (1) into Eq. (2), we find that

y Se(P.@)=(1/RI+1/R3)So (@) + (WP Py w)e™ P RI/R Ry 4ccl. (3)
. Here
E. So(@) =(Q* (PL.0)Q(P.0)) =(0* (P1,0)Q(P1.0)) @)
vy is the spectrum (assumed to be the same) of each of the two source distributions,
.
v
::I: WQ(P|.P2,O))"(Q‘(P[.GI)Q(PL,Q))) (5)
< is the cross-spectral density of the source fluctuations [first paper of Ref. 6, Egs. (3.3) and (5.9)], and c.c. denotes the
P‘ . complex conjugate.
., The degree of spectral coherence at frequency w, which is a measure of correlation that may exist between the two
N fuctuating sources, is given by the formula®
" po(PPw) =Wy (P, Pra)/Solw). (6)
l\‘ .
- The normalization in Eq. (6) ensures that 0< | ug(Py,Pr.w)| < 1. The extreme value |ug| =1 characterizes com-
) plete correlation (complete spatizl coherence) at frequency w. The other extreme value, u =0, characterizes complete
".' absence of correlations (complete spatial incoherence).
4 On substituting for Wy, from Eq. (6) into Eq. (3), we find that
r Lo
. St(P,w) =S 1/R}+1/RI+ lug(w)e™ P17 R/R Ry +cc 1), M
'
» 2646 © 1987 The American Physical Society
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P

P2
FIG. 1. Geometry and notation relating to the determina-
tion of the spectrum Sy (P.w) of the field at P produced by two

small sources with identical spectra Sg(w) located at Py and
P,

where | have omitted the arguments P and P in u. For
the sake of simplicity, let us choose the field point P to
lic on the perpendicular bisector of the line joining P,
and P,. Then R,=R; (=R, say) and formula (7)
reduces to

Su(P.w)=(2/R)Sg(w)1 +Repg(w)], (®)

where Re denotes the real part.

We note in passing that when cither yg(@)=0 (mutu-
ally completely uncorrelated sources) or when ug(w)=1
(mutually completely correlated sources), the spectrum
Su(P.w) of the ficld at the point P will be proportional
to the spectrum Sg{w) of the source Auctuations. How-
ever, in general this will not be the case. In fact, it is
clear from formula (8) that the field spectrum may differ
drastically from the source spectrum, the difference de-
pending on the behavior of the correlation coefficient
no(w) as a function of frequency.

Suppose now that the spectrum of each of the two
sources consists of a singic line of the same Gaussian
profile,

Solw)=Ae @™V, ©)

where A, wo. and 8y (< wp) are positive constants. Sup-
pose further that the correlation between the two sources
is characterized by the degree of spectral coherence

—(u—-.)’/lﬂ_l‘ (10
where a, @, and 8 (< w,) are also positive constants. In
order that expression (10) is a degree of spectral coher-
ence. 1 must also demand that @ < 2. On substituting
from Egs. (9) and (10) into Eq. (8), I obtain the follow-
ing expression for the spectrum of the field at the point
P

polw) =ae

Sp(P.w)= 2:;1 e —(.—.,)*/zue -(.—..)I/zsf_ (1)

™ ™

{RY28)5,(P,w)

L .

4.32200 4.32201
{units: 10" sec™")

4.32199 4.32202

FIG. 2. Red shifts and blue shifts of spectral lines as pre-
dicted by formula (12). The spectrum Sg(w) of each of the
two source distributions is a line with a Gaussian profile given
by Eq. (9) with A=1, wo=4.32201x10" sec ™' (Hg line
A=4358.33 A), So=5x10° sec™'. (a) The field spectrum
Su(P.w) at P when the two sources are uncorrelated (up=0).
(b),(c) The field spectra at P when the two sources are corre-
lated in accordance with Eq. (10), with a =18, §;=7.5x10°
sec ', and (b) @) =awo~ 258 (red-shifted line), (c) w)=wn
+ 289 (blue-shifted line).

By straightforward calculation one can show that this
expression may be rewritten in the form

SU(P,w)-A'e_('_""))/mz. (12)
where

A'=(24a/R?)e ~ @ W VNS (13)

wé"(&fwo+83w|)/(6&+5f). (14)
and
/662 =1/88+1/6¢. (15)

On the other hand, were the two sources uncorrelated,
the correlation coefficient uy would have zero value and
we would then have, according to Egs. (8) and (9),

(S0 (P, lyncore = (2A/R ) e ™10/ K, (16)

Comparison of Eq. (12) with Eq. (16) shows that al-
though both the spectral lines have Gaussian profiles,
they differ from each other. Since according to Eq. (15)
86 < 8, the spectral line from the correlated sources is
narrower than the spectral line from the uncorrelated
sources. Further, we can readily deduce from Eq. (14)
that
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according as
o, Swy

Hence if @) < wg the spectral line (12) produced by the
correlated sources is centered on a lower frequency than
the spectral line (16) from two uncorrelated sources, i.e.,
it 15 red shifted with respect to it; and if @), > wy the
spectral line (12} is blue shifted with respect to the spec-
tral line (16). Figure 2 illustrates these results by simple
examples.

The preceding considerations show clearly the possibil-
ity of generating, by means of correlations between
source fluctuations, either red shifts or blue shifts of lines
in the spectrum of radiation emitted by sources that are
stationary with respect to an observer.
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THE RADIANCE AND PHASE-SPACE REPRESENTATIONS
OF THE CROSS-SPECTRAL DENSITY OPERATOR

G.S AGARWAL ' J.T. FOLEY “and E. WOLF *

Department of Pivsics and Astronomy, Universayv of Rochester, Rochester, NY 14627 15

Received 17 October 1986

Hilbert space operators are introduced into classtcal wave theory, which make it possible to associate a unique operator with
the cross-spectral density. By linearly mapping this operator onto an assoctated phase-space one obtains a wide class of generalized
radiance functions, including two well-known ones that were introduced by Walther 1n a different manner. When the source 1s
quasi-homogeneous and the wavelength 1s short enough all these functions become identical. and this untque hnue s found to
have all the properties of the traditional radiance, at least in the source plane.

1. Introduction

In order to clarity the foundations of radiometry a
number of authors proposed various expressions for
the radiance. in terms of the cross-spectral density of
the light distribution across the source [ 1-5]. Unfor-
tunately nonc of them satisfies all the postulates of
radiometry for any state of coherence of the light and
it 1s now know that none in fact exists, if the radiance
15 to be linearly related 1o the cross-spectral density
[6]. Very recently it was shown, however, that if the
source 1s quasi-homogencous, the expressions for the
radiance proposed by Walther {4,1] acquire, in the
himit of short wavelengths, all the properties that one
postulates for it in traditional radiometry [7.8].

It was noted [ 9] that in its mathematical structure
radiometry has much in common with the phase-
space representation of quantum mechanics. In par-
ticular the phasc-space representation of quantum
mechanics deals with functions which are c-number

“ Research supported by the Natronal Science Foundation and
by the Asr Force Geophyaes Laboratory under AFOSR Task
230G
Permanent adress: School of Physics, University of Hydera-
bad. Hyderabad-500, 134 India.

" Permanent adress: Department of Physics and Astronomy,

Mississippi State University, Mississipp State. MS 39762,

UiSA,

Also at the Institute of Optics, Liniversity of Rochester.

0030-4018/87/903.50 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)

representatives of pairs of conjugate operators and
the radiance is a function of a pair of vanables that
are conjugate in the sense of Fourier theory. In the
present paper we investigate this similarity further
and we show that it leads to a clarification of the true
significance of the radiance.

We show in see. 2 that even within the framework
of classical wave theory one may introduce non-
commuting operators ' p and § which are associ-
ated with position (p) and direction (s ) respec-
tively. In sec. 3 we associate a umque Hilbert space
operator G =G (p. §,) with the cross-spectral den-
sity. Using this fact we then briefly indicate how a
whole class of generalized radiance functions 4,.(p.
s) may be introduced by hincarly mapping ((p. 5§ )
onto an associated p.s  -phase space. [nsee. 4 we ginve
explicit expression for such mapmngs and we illus-
trate the results by showing that the (wo expressions
for radhance proposcd by Walther are (apart from a

trivial factor) just the phiase space representatives of

G(P. 5. ) obtained according to the so-called Weyl
rule and the anustandard rule of mapping (operator
ordermg). In the concluding section (sec. 5) we show
that in the short wavelength hmat all the generalized
radiance functions become identical. Finally we show
that when the source 1s quasi-homogencous, this
unigue limit is a function that has all the properties

" We denote operators with a caret
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Fig | Notaton relating o tormula €2 1) for the radiant intensity.

postulated for the radiance n traditional radiome-
try. at feast in the source plane.

2. Position operator, its conjugate operator and
commutation relations for classical wave theory

Consider a steady-state (1.c. statistically station-
ary). planar, secondary source, occupying a portion
a of the plane 2= 0 and radating into the half-space
2> 0. The radiantantensity J,(s). 1 ¢ the rate at which
the source radiates energy at frequency ¢ per unit
sohd angle around a direction specttied by areal unit
vedtor s.s known to be given by the expression [ 10]

JUsy - (2nhs ) Wiks . ks Lw) . (2.

Here

- n

Wof foomy 2my Wi pe

-expl atfiop +fopldp, dp. (2.2)

is the four-dimensional spatial Fourier transtorm of
the cross-spectral density function Hip,. p.. v).
Further p, and p. are position vectors of any two
source points S, and S.. s =(s5..5,. 0) 15 the com-
ponent (constdered as a two-dimenstonal vector) of
s parallel to the source planc and . 1s the component
of s along the normal to the source plance (see fig. 1).

In the domatn of physical ortics, the radiant inten-
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sity J,.(s) 1s the main measurable quantty relating to
radiation generated by the source. In radiometry the
chief quantity is the radiance B.(p.s) which s
regarded as representing the rate at which energy at
frequency v is radiated from a source element of unit
area at p into a unit sohd angle around the s-direc-
tion. A basic radiometnc formula, which is always
introduced from intuiive geometrical considera-
tions, expresses the radiant intensity in terms of the
radiance as

J(s)=3s. ‘.B,.(p.s)d*'p. (2.3)

i

In attempts to clarify the relatnon between radi-
omeltry and classical wave theory varnous expres-
sions have been proposed for the radhance in terms
of the cross-spectral density ([ 1.5]). For reasons that
will become apparent shortis we will refer to the
quanuties introduced in this way as coneralized radi-
ance functions and denote them by the symbol 4, (p.
s). When appropriate we will attach a supersenipt to
this symbol 1o disuinguish between the ditferent det-
initions. As already mentioned 1n the introduction,
the vanous expressions proposed for the radiance
have very simifar mathematical structure as some of
the phase-space  representatines  of  quantum-
mechanical operators. This similanty suggests that
the generahized radiance functions may be just dif-
ferent phase-space representatives of one and the
same Hilbert space operator We will show later that
this indeed s the case Belore doimg so we will intro-
duce a set ot non-commuting operators into classical
wave theory.

We consider the Hilbert space of square-integrable
funcuons of p. We associate with cach cartesian
coordinate v and v o1 p operators v and v whose
cigenstates | v and 1o are defined in the usual way:

Vi [UR NS Vi (2.4

Next wentroduce the vector operator p < (X, v) and
the tensor product cigenstates 1p v I fol-
lows from egs. (2.4) thatpip . . plp .

For our purposes the varables conjugate to v and
v and the associated operators may be most naturally
introduced in the following way, We consider mon-
ochromatic wavefields ('(r. ) exp( - 2miet) 1n the
half-space = - 0. which behave as outgoing spherical
waves at intimity in that half-space. UCr. ) then sat-
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isfies. throughout that half-space. the Helmholty
equation

(F-+k")y Utr. vy =0, (2.5)
where
k=2nrvic. (2.6)

¢ being the speed of light in vacuo. It 1s well known
that under very gencral conditions {'(r, v) may be
expressed in the form of an angular spectrum ot plane
waves, vize [ 1]

Ulr,v)= [.u(s‘.u)cxp(iks-r)dfxg . (2.7)
Here s=(s,. 5. s.)=(s . 5.) is again a unit vector
but it may now take on complex values. More pre-
cisely. v and s, with0 <y, < » (<5 < are real and
s (logt oy

when s +a7 <1, (2.8a)

=i(sT+si- 1) wheny #s5i>1 . (2.8b)

Let us now specialize eq. (2.7) to the representa-
tion of the tield at points p= (¥, v. D) in the source
plane == 0 and let us operate on it with the trans-
verse laplacian, 7 = (@/dx. /dy). We then tind thay

—iAF Ulp.r) s dls .ryexpliks -p)yd-s,
(2.9)

where

R=p2n =Wk =c2nuv

(2.10)

1s the “reduced™ wavelength. Eg. (2.9) suggests that
we associate with s an operator s by the formula

S‘ Ea IX‘ ( :l 1 )
Its cartestan components
\ LSUTIVRY LAy (2.1

together with the postion operators v and ¥, m
readily be shown to obey the commutation relations

[.5.] A, [66] A (2.13)

which are analogous to the guantum mechanical
communttation relations for position and momen-
tum [12]).

OPTICS COMML
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3. A class of generalized radiance functions

In an importiant paper deahing with radiometry and
coherence. Walther [ 1] introduced the generalized
radiance function

BN P s)=(h2r)y v Y ps ) (3.1
where

Fps ) I 0pelpp tpv

~eap( ths cp Yy dip . (3.2)

In these formulas s denotes a real unit vector and
W(p,. p.. 1" represents the cross-spectral density in
the source plane.

In the phase-space representation of guantum
mechanics a function #* % of the form given by the
integral (3.2) 1s the so-called Wigner representative
of an operator (5 that depends on a pair of non-com-
muting variables {13}, In analogy with the relation
between the Wigner distribution tunction F°% ' and
the operator ¢ which it represents in phase space. we
will rewrite cq (3 ?) in the form

xexpl( -ihs p)dip . (33
where
oGS Mp: >y =Wi(pp..1). RN

The function F.% ' (p. s ). detined by these two
equations, may be said to be the Wagner representa-
tive of the Hilbert space operator ¢ (p.§ ) by
(3.4) shows that the matny elements of this operator
are just the appropriate values of the cross-specrial
density Wip,. poo ). T scems worthwhile o stress
that 1 spite of its close resemblance o the phase
space representation of quantum  mechameoes the
above representation s based entiely on classial
theory.

Fhe operator 6 - GEpos ) that we justintroduced

Sinee tre present theory s based on clasacad rather than quon
tum theory & 8 Arather L fieh 0 2o hemg Plandk s cone
StINLY appearsineg (3

Cthe operator 40 Gepo 9 v and also the operator Hip p
s vand the tunction Qo enintrodoced below depend on
v, but we do not display this dependence

(3
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viaeq. (3.4) may be expressed in many different ways
by the use of the commutation relations (2.13). More
specifically, it (7 is expressed in the form of a power
series in the cartesian components of p and §, . cach
term involving a product of these elementary opera-
tors may be arranged according to some chosen rule
of ordering (cf. [14}). One can associate with each
such ordered series a c-number representative ( phase-
space representative) of (. The function FUW'.
defined by eg. (3.3). is among the best known rep-
resentations of the operator. It may be shown to be
associated with G via the so-called Wevi rule of
ordering.

[uis evident that other generalized radance func-
tons can be introduced via formulas of the form
{3.1yand (3.2y. with .M (p.s ) replaced by other
phase-space representatives of the operator . If we
tabel the different representatives of G by superseript
£2we will then have in place of eq. (3.1) the formula

Aposy (K2 s N pes ). (3.5)

We will consider phase-space representatives
F. 7 (p. s ) produced by mappings of the class
mvesugated in ref. [14). Each F,*"(p. s, ) is then
related hinecarly to G(p. § ) and 1t follows from ¢qs.
{34y and (3.5) that the associated generalized radi-
ance function

A7 (p sy = L' Wip,.psi)) . (3.6)
where L denotes a lincar transtormation,

We will impose on .4.%" the constraint that
JoAsy -y R (p.sydp. (3.7)

where J.0s) s the radiant intenssty given by the
capression (2.1) of physical opuics. In eq. (3.7) the
integral extends over the whole source plane = 0. It
will. of course. reduce to the radiometric expression
(2 3y when £, (pos) vamishes for all p-vectors that
specity poimtsan the source plance outside the region
a occupied by the source.

4. Expressions for the generalized radiance functions

[tis known torm the general theory of phase-space
representations of  functions on  non-commuting

70
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operators [ 14] that every lincar mapping (of a broad
well-detined class) of operator functions (7(p. § )
onto c-number functions FU' (p. s ) is character-
1zed by a filter function Q(u. ¢). with the following
properties:
(a) $2(u. r) is an entire analytic function of the
four complex variables u== (1, . u ). v={r,.0,).
(b) £(u.r) has no zeros on the real i -, u,-. ',- and
1, -axes,
(c) 2(0,0)=1.
The explicit expression for /*' in terms of G is *

FlEps ) s(znx)-‘J (PGS )

xd“(p-pys 5§ Vp > dp . (4.1)

where

‘1“;’(p~ﬁ,$ f )=Q2n; °? l[!}lu.t')

-

xexpl~ifu-(p-p)+e-(s. -§ )] dud’v,
(4.2)
and

Qu.oy=[8(~u. -1)} . (4.3)

On substituting from eq. (4.2) into eq. (4.1) and
then substituting the resulting expression for £
into eq. (3.5) and making use of eq. ( 3.4} we obtain.
after some calculation, the following expression for
AL

A (p.s) = (2m) s, JJA}. Su, r)

xexpl - ilapres, FiRu-))Wip,.p, - Reov)

xexpliwp ) d'ud ' vrdp, . (4.4)

We see that 2% 1sindeed a linear transform of the
cross-spectral density W [see eq. (3.6)].

Now 4. must also satisfy the relation (3.7), with
the radiant intensity J.(s) given by eq. (2.1), re. it
must satisfy the relation

J B, syd p —(2n) s Wiks, . ks, . p) .
{4.5)
“ Many of the formulas pertaiming 1o the mapping theory devel-

oped in et [ 14] contam the “reduced™ Planck’s constant A
but they also apply to the present case if one replaces by X

N
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This requirement places a certain constraint on the

admissible filter functions £2(u. ¢). It is a straightfor-
ward matter to show that the constraint is

£2(0.0)=1 foralle. (4.6)

Let us now consider some examples. For the Hey!
rule of ordering ([14), sec. VII) Q=" where

Q% (u ey=1. (4.7)

If we use this fact in the general formula (4.4} we
find, after changing one of the variables of integra-
tion from etop = ¢/X that 4, = 4. where

AP, s) = (K2m) s, [ Wipiip.p-ip . 1)

Xexp(—iks -p)dip . (4.8)

The expression on the right is preciscly the first
expression proposed by Walther { 1] for the radiance
function. which we have already encountered [egs.
(3.1)and (3.2) above].

For the so-called antistandard rule | [14]. sec. VI
of ordering, £2=¢€2'*> where

Q' (u, vy =exp( —iku-/2) . (4.9)

If we use this expression in the general formula (4.4)
we find that

B (p.s)=(k/2m) s.exp(iks _ -p)
XJW(p..p.V)cxp( ~ths, p) dip, . (4.10)

The expression on the right is the complex form of
the second expression proposed by Walther (4] for
the radiance function.

5. The short wavelength limit with quasi-
homogeneous sources

Although the procedure outlined in the previous
sections feads to a targe class of generalized radiance
functions, it 1s clear from the remarks made in the
introduction that nonc of them will sanisfy all the
postulates of traditional radiometry for sources of any
state of coherence. However. as we will now show,
our theory leads to a very general result regarding the
foundations of radiometry.

OPTICS COMMUNICATIONS Iy Aprd f9x?

We have seen that the different phasc-space repre-
sentatives 1 of G and consequentls the vanous
generalized radiance functions A%’ are associated
with difterent rules of ordering of products involving
the noncommuting operators p and § . However, it
1s seen from eq. ¢ 2.13) thatin the imitas X -0, these
operators will commute and the distinction between
the different types of ordering will then disappear.
Conscquently all the phase-space representatives 25
of the operator ¢ and hence also all the seneralized
radiance tunctions A2 will become wdentical i the
short-war clength limir, However, in view of Friberg's
theorem {6 this himiting expresston cannot be
expected to have all the properties attributed to the
radiance function in traditional radiometry  tor
sources of any state of coherence.

It was recently shown { 7] that when the source is
quasi-homogeneous the generalized radiance func-
tion (4.10) isin the limitas X 0 (more precisely in
the asymptotic limit as k- 1/X +0) given by the
expression

AAp.s) ks " poeryg (ks )
when pea

=0 whenpéo ., (5.1)

where 1" (p. v) represents the intensity distribution
across the source and

-

g =2n | e men(-ifp) dip

is the two-dimensional Fourter transtorm of the
degree of spectral coherence of the light distribution
in the source plane. The expression (5.1) was shown
10 have all the properties atinbuted to the radiance
function in traditional radiometry. It tollows from
this result and the result estabhshed carhier 1 thas
section (itahcized above) that when the source is
queasi-homogeneous, all the generahized radance
functrenis A5 (psy of the class that we hare consd-
cred i thes papcr have the same asymptone imit,
given byveg. (3 1Y, as hovrsand thes commaon fomit-
tng form of all the generalized radiance functions may
be identified with the radiance of traditional radiome-
ey, af least ar all poines in the source plane,

It should be cvident that we have not proven, in
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the strict mathemanical sense that radiometry, even
for the restricted class of quasi-homogeneous sources.
is the asymptotic limit for large wave numbers of sta-
tistical wave theory. In this connection it might be
worthwhile to point out that the somewhat anato-
gous statement frequently made that classical
mechanics is the limit of quantum mechanics if
Planck's constant #-+-0 has not been rigorousiy justi-
fied to this day: and that even the restricted class of
systems for which this statement may perhaps be true
has not been precisely defined. Nevertheless we are
ot the opinion that the results derived in this note
provide a genuine insight into the true meaning of
the radiance.
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An exact law i derived for the propagation in tree space of the first gencralized radiance function introduced by

Walther. A simphificd form of this law is obtained for the case when the source is quasi homogeneous. 1t is also

Ll
o
-
h: 1. INTRODUCTION
> [n two well-known papers!? dealing with the foundation of
radiometry, Walther introduced certain generalized radi-
_. ance functions. These functions have some of but not all the
- properties that are attributed to the radiance in traditional
: radiometry.*  Much subsequent wark, aimed at clarifving
. the connection between radiometry and physical optics.
. made considerable use of these functions. We will refer to
the generalized radiance function introduced in Refs. 1 and 2
as the first and the second generalized radiance functions
ol (g.r.f.'s), respectively.
g Approximate transport equations for the propagation of
“ either of these two g.r.{.'s were obtained by Walther * Jann-
! son,” Friberg ¥ Pedersen,” and Bastiaans.® An exact law for
h the propagation of the second g.r.f. in free space was recently
obtained by Foley and Wolf.? who also showed that when the
V) source of the optical field is quasi-homogeneous this func-
) tion acquires, in the short-wavelength limit, all the proper-
v ties that are postulated for the radiance in traditional radi-
: ometry. They also abtained an explicit expression for this

limiting form of the second g.r.f. in terms of the distribution
] of the intensity and of the degree of spectral coherence of

hgzht across the source.
" In the present paper we derive, to begin with, an exact lnw
. tor propagation of the first g.rf. in free space. We then
consider the form that this propagation law takes when the
source is quasi-homogeneous.  Finally we cansider the as
vimptotic limit for farge wave number (short wavelength) of
the first g.r.(. in optical fields produced by a quasi-homoge
neous source, and we find that it is identical to the corre
spending limiting form obtained for the second g £ in Ret,
9. Under these circumstances the propagation law i found
to reduce to the usual radiometric transport equation.
These results, together with those derived in Ret. 9. goa long
way toward clarifving the foundation of radiometry.

2. PROPAGATION LAW FOR WALTHER'S
FIRST GENERALIZED RADIANCE

Let us consider a secondary source occupying a tinite do
main o in the plane 2 = 0 and radigting into the hall space ¢

D40 2T 071203 04802 00
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shown that when the source is quasi homogencous and the wave number is large enough (the wavelength is
sutficiently short) the first generahzed radiance acquires all the properties of the radiance of traditional radiometry.

> 0. We assuime that the field fluctuations in the source
plane are characterized by a stationary statistical ensemble.

We denote by Wir, r., w) the cross-spectral density of the
emitted light at anv two points Py and P, specified by
position vectors vy and ro, in the half-space 2 > 0. Let us
choose the two points to be located in some plane 2 = con-
stant > 0, which we will denote by 11, and let

r=(r +r)/2, p=r, - r. (2.1a)
Then

ro=r+p/2, r,=r-p/ (2.1
(See Fig. 1, where P denotes the point with position vector
r.) An expression for the first generalized radiance intro-
duced by Walther,! and defined by him at points r in the
source plane z = 0, can readily be generalized to apply to
field points £ in any transverse plane 11 in the half-space z >
0. It takes the form

kY . N
hiArs) = ( ) . J W(r + p/2, £ — p/2lexpliks | - p)dn,
T i

where

is the wave number associated with the frequency « and
wins elength Ao s the speed of light in racuo, s (8,8, 8 ) is
arealumit vectoroand s (s,os L 01 isOts Transverse compo-
nent teonsidered o two dimensional vector).

Weowill o derive an expression for 4 in terms of the
value 4007 that the generabized radiance g, 2.2 takes in
the source plane - = 00 Por this purpose we will ke use of
the tollowing result estabhshed not long ago.' The cross-
spectral densooy Wir e o) nany be represented in terms of
anappropriate ensemble Hoe O of monochromatic wave
ftinctions lwath tine dependence expt -raf) understood]
that propagate trom the souree plane = = 0 into the half

space s O the Torm

Wir e - e adlr ) (2.0
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source

- 3P,
Fig. 1.

Here the angle brackets denote the average taken over this
ensemble. Now the value of U/(r, w) at any point r in the
half-space 2 > 0 may be expressed in terms of its boundary
values { "(ry, w) at point r, in the source plane z = 0 by the
use of Rayleigh’s formula!

e, M, wid (2.5)

Uir, wi = ’ Gir -

Is-0

where G(r = ry, @) is the Green's function

1 o [exptikir — e b
O a2z r-r)

On substituting (rom Eq. (2.5) into Eq. (2.4), we readily
find that

(ir — (2.6)

r, w = —

Wr, 1 w) = ” G*(R,, ©)G(R,, w)
(o=

X Wrg,, ro)dr, d7r. (2.7

where r.y, Iy are the position vectors of two typical points Q,
and (- in the source plane,

R=r-r, (=12, (2.8)

and

LT S T R R R T R | Sy (2.9)

1s the cross-spectral density of the light in the source plane.
The integration on the right hand side of Fq. (2.7) is taken
twice independently over the source plane.

Let us now change the variables in Eq. (2.7) according to
the transformation (2.1h) and according to a similar trans-
tormation involving the source variables:

Foy = By + /2, ry =1, = p /2. (2.10)

tr,, represents the point Quin Fig. 1.) The formula (2.7) then
takes the form

Wir+ p/2.r— p/2, w) = “ Grr—r, + (p— p /2, )
oy

X ("r L (P - puv"‘ “‘l

«W'r, 4+ pJj2. 0,0 7 ad rdip, (2.11)

.l
- '\J..P\“‘p\-‘\

n’u"

o> "’\f" Tt

K. Kimand E Walf

[lustrating the notation.

where we used the fact (it d'rad?re: = dord¥p,. Let us
now substitute from Eq. (2.11) .nto the expression (2.2),
interchange the order of integrations. and make use of the
fact that the generalized radiance B_'""(r..s) at points in the
source plane is given by |ef. Eq. (2.2)]

B Mir,8) = ("’ ) s,{ W, + po/2, Ty ~ o/, o)
2r 2=0)
Xexp (tks | - po)d"p,,, (2.12)
where 5. is the z component of the unit vector s. We then

obtain the following expression for the generalized radiance
A.(r, 8) at any point r in the half-space z > 0 in terms of its
bhoundary values B_(r, 8) at points r, in the source plane:

£ r,8) = J K(r—r, si0)8_ M, 8)dr,  (2.13)
(z=0)

The kernel K(r — ry, s; w) in this integral is given by the
formula

Kir-r,.sw)= [ GHr—x,+ p/2, OGr—r, - p'/2, &)
u

X expliks <o (2.14)
In deriving this expression we changed the variable of inte-
gration from ptop’ = p — py.

The formula (2.13) represents an exact law for the propa
gation of Walther's first radiance function from the source
pline 2 = O inta the half space 2 > 0,

We will now specialize the general formula (2.13) to fields
generated by quasi-homogeneous sources that are of partic-
ular interest in connection with the foundation of radiome-

try.®

3. PROPAGATION OF THE GENERALIZED
RADIANCE WHEN THE SOURCE IS
QUASI-HOMOGENEOUS

When the source is quasi-homogeneous, the cross-spectral
density function W(r e, w) has the formt-
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r t+r,
W“”(r,, r,w= l“"(' ! 9 , w) g“”(rz -r,w), (3.1

where I'V(r, w) is the intensity distribution and g(r’, ) is
the degree of spectral coherence of the light in the source
plane. I'"(r, w) is assumed to be a slow function of r. whereas
£, w) is assumed to he a fast function of r'.

On substituting from Eq. (3.1) into Eq. (2.12), we obtain
the following expression for the generalized radiance of a
quasi-homogeneous source at any point ry in the source
plane:

.B‘m)“.m 8) = kz-\‘,llm(l‘", w)i,’“"(ks o w). (3.2)
Here
2", w) = - L _ jg“"(r'. wlexp{—if - r)d°r 3.3)
(2m)?

is the Fourier transform of g"(r’, w). To determine the
generalized radiance of the field at any point r in the half-
space z > 0 produced by the quasi-homogeneous source, we
substitute from Eq. (3.2) into Eq. (2.13) and find that

A r,8) = k"'.s'.,i""'(kx L wIMIUr, 8; ), (3.4)

where

Mir, s w) = J Kir — r,, 8; " (r,,, @)d’r,, (3.0)

and the kernel K is given by Eq. (2.14).

4. SHORT-WAVELENGTH LIMIT OF THE
GENERALIZED RADIANCE OF A FIELD
GENERATED BY A QUASI-HOMOGENEOUS
SOURCE

Let us now consider the behavior of B_(r, 8) of a field gener-

ated by a quasi-homogeneous source in the short-wave- *

length limit, more precisely, in the asymptotic limit as the
wave number k = 2x/\ For this purpose we first
express the Green's function (2.6) in a more explicit form.
On carrying out the differentiation we readily find that

* o

(,:hI(

GR,w) = -, R

[

which, for sufficiently large values of kK, may be approxi-

mated by
(z)
R

Next we substitute from expression (4.2) into the expression
(2.1 for the propagation kernel K(r — .., 8w and find that
when kR > 1L AR » 1

(4.1)

GIR, o) ~ ~ K
2r

k
o It

. 4.2)
R :

’ s iy
Kir-r,.s8 w) = ('—’;) Ll "Rl-l" Rl expliks - pd*p',
4.3)
where
Ro=r—r, +p/2 (4.4a)
R,=r—r,—-p/2 (4.4b)
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Let us next determine the asvmptotic approximation as k
» » for the factor M{r, s, «). defined by Eq. (3.5). which
enters the expression (3.4) for the radiance function of a field
generated by a quasi-homogeneous source.  For this purpose
we substitute for Kir = r,,, 8; «) from expression (4.3} into
Eq. (3.5) and introduce the new variables

(4.54)

p.=r ot i (4.5h)

One then readily obtains the following expression for Mr,
S, w):

k2 expliklr — p,h

.)"_)k } d!/‘:!

Mtr, s; w) =< expliks - p.)

lr = o

R exp(—iklr — p,| w ot
X [d‘pl . A Y
! Ir=pl 2
X expl—tks - p,), (4.6)

where we have made use of the fact that d*ryd?p’ = d?pd*p..

We may express Eq. (4.6) in a more symmetric form by
making use of the tact that hecause the source was assumed
to he quasi homagencous, 1'p, o) will change slowly with p
tor ench ctiective frequeney w that contributes to the source

spectrane . Hence we noy make the approxnmuation

mtp,
st -
I ( e

on the right-hand side of expression (4.6). The resulting
expression for M(r. s; «) may then be written in the form

w) DR TRV IRS T L VA PRI I (4.7)

kz\ .. .
M(r.s;w) > (_) ) Frosia) (e, s w), 4.8
om
where
. t'xp(ik‘r -ph
Fir, s; «) =[[/“”(p,.w)|" .
fr—pl
X expliks | - pdd7p . (4.9

The asymptotic approximation to the integral on the
right-hand side of Eq. (4.9) may be determined by the use of
the two-dimensional form of the principle of stationary
phase.’* In carrving out the calculations we ignore the de-
pendence of the source intensity I'"(p, «) on w, for reasons
indicated in connection with the approximation (4.7). The
result is

+) N
Fir, s ) ~ ";r' ol = 2/s s Lol “exptiks o)

when S, »

~ 0 when S, ¢ o 111

» =, where S, is the point in the source plane 2 = 0
whose position vectoris p — (2/5s . (see Fig. 23, Onsubsti
tuting trom expression ¢ 1) into expression (LX), we obtain

for Mir, 8; ) the asvmptotic approximation

as k

M osca) ~ 1" p - 2is s o when 8, o LD
. ol
~0 when S, ¢
ask = ov.
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tig. 2. [ilustrating the notation relating to the formula (4.14). S,
i~ the point in the source plane at which the line through the field
point P an the direction of the unit vector 8 intersects that plane.
The vector p — (2/s,)s , which appears i expressions (4.10), (4.11),
and (4.13) i the position vector of the point S,

On substituting from expression (4.11) into Eq. (3.4), we
see at once that

B.ir,s) ~B.(r,8) ash >, (4.12)
where

B tr.s) = k% I"|p - (2/s08 . w|
=0 when S, ¢ a

when S, ¢ ¢

(4.13)

Since p — (2/s.)8, is the position vector of the point 8, at
which the line through the field point P in the s direction
mtersects the source plane, Eq. (4.13) may be rewritten in
the torm

BAP s = k7 'S, w)[,’“"U\'sA L w) whens e Q)

=0 whens ¢ ¢,

(1.14)

whiere 20s the solid angle generated by the lines from all the
sonree points to P (see Fig. 2).

The expression (4.14) is identical (except for a slight
hange in notation) with the expression derived in Ref. 9 for
the asvmptotic limit as £ » « of the second generalized
radiance function of Walther, under the assumption, made
also in the present paper, that the source of the field is a
guast homaogeneous source. It has also heen shown in Ref. 9
that the expression (1.14) satisfies all the postulates of tradi-
teonal radiometry in free space. We may, therefore, con-
clude by saving that the analysis presented in this paper
~upports the view that traditional radiometry may be re-
sarded as the asymptotic limit tor large wave numbers (short
wis elengths) of statistical wave theory of fields produced by
(NI h(?lll”g(‘lll‘hll.\ SOUUTUeS,
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Note added in proof: Since this paper was written anoth-
er paper dealing with the foundations of radiometry was
published [M. Nieto-Vesperinas, *“Classical radiometry and
radiative transfer theory: ashort-wavelength limit of agen-
eral mapping of cross-spectral densities in second-order co-
herence theory,” .J. Opt. Soc. Am. A 3, 1354-1359 (1986)].
Unfortunately the main conclusions of that paper are incor-
rect hecause the analysis contains several errors.  Specifical-
lv, the expression (29) of that paper is not the only expres-
sion that satisties Eq. (27). Mareover, the flux equation (16}
does not imply that /(r, 8) is positive definite, as is stated
below Eqg. (32).
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The S matrix is first introduced within the framework of the angular spectrum representation of wave fi_elds
interacting with linear dielectric bodies of arbitrary shape. By using some universal properties of the § matrix. a
number of relations involving certain generalized reflection and transmission coefficients are derived. These
relations may be regarded as generalizations of two well-known classic reciprocity relations due to G. G Stokes.
Two reciprocity relations involving the reflection and the transmission coefficients for interaction of a plane
electromagnetic wave with a stratified dielectric medium are obtained as special cases.
EJ
: 1. INTRODUCTION wave theory. Qur derivation utilizes in a basic way the
", . . . \ . concepts of the angular spectrum representation of wave
In a classic paper published in 1849, § 8! v wo . . . . : .
' lassic ¢ per publishec. .49 t.Uke den' ed t fields and of the S matrix. The combined use of these two
, well-known reciprocity relations involving reflection and .
y . . . . concepts has already proved rather useful in treatments of
transmission of light. More specifically, he considered a . . . ) i .
. . other prehlems, which vielded interesting results relating to
plane monochromatic wave incident upon a plane boundary . : . . .
. S . L the theury of antennas” and to distortion correction by phase
separating two semi-infinite, homogeneous, isotropic dielec- . A L . .
. : . 5 L conjugation.® The generalization of the Stokes relations
tric media. Suppose that #, and #, are the angles of incidence . .
d . . presented in this paper does not, however. appear to have
A and refraction, respectively, when the wave propagates from been obtained previously
. the first into the second medium, and that r and t are the p R
" carresponding reflection and transmission coefficients.
P, Next consider the situation when the wave is incident at an 2. SOME GENERAL RELATIONS INVOLVING
angle #,” = #, from the second into the first medium, and let p THE ANGULAR SPECTRUM
and 7 be the corresponding reflection and transmission coef- REPRESENTATION OF WAVE FIELDS AND
ficients. T'he relations derived by Stokes are THE § MATRIX
: 4+ rt=, (1.1a) Consider a monochromatic field, not necessarily a planar

p+r=0. (1.1b)

The relations (1.1) were later generalized to somewhat
; more complicated situations involving stratified media, and
: they have played a useful role in optics of thin homogeneous
: films.” More recently, relations of this kind have b :come of
S importance in some investigations concerning the cancella-
A tinn of distortions by the technique of phase conjugation.®*
] All these situations have one feature in common. They
involve a homogeneous or a succession of homogeneous di
electrics with mutually parallel planay boundaries, and, con-
sequently, when a plane wave is incident upon such a config-
uration only one reflected and one transmitted wave is gen-
erated. It seems natural to inquire whether one can
generalize the Stokes relations further, so that they apply to
<situations such as rough-surface scattering and scattering
trom an inhomogeneous plane-parallel dielectric slab or to
phase conjugation of waves that are scattered from a dielec-
tric hody of arbitrary shape.  In the present paper we obtain
. ~uch a peneratization within the framework of the acalar

0740422, 861 220380980200
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one, incident upon a dielectric scatterer. We denote by
Un(r)exp(—iwt) and U"*'(r)exp{~iwt) the incident and the
scattered fields, respectively, with r denoting the position
vector of a typical point in space, ¢t the time, and « the
frequency. The total field U(rlexp{—iwt) is, of course, the
sum of these two fields.

Let us choose a Cartesian-coordinate system of axis so
that the scatterer is situated within the strip0 € 2 < L, and
let 7~ and A" be the two half-spaces on the two sides of the
scatterer (see Fig 1) It is well known that under very
general conditions the total field in each of the two half-
spaces may he represented in the form of an angular spec-
teum of plane waves. hoth homogeneous and evanescent
ones.” The amplitudes of the evanescent waves decay expo-
nentially with increasing distance from the scatterer. Be-
cause we will be interested only in the field far away from the
scatterer, we will omit the contributions of the evanescent
waves. ‘The angular spectrum representation of the time-
independent part of the total field then takes the following
form in the two half spaces:

¢ 1986 Optical Society of America
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Fig. 1. Ilustrating the notation.

In /-
U'ip) = - k ‘ C ' m)ettrrda + ik f DV '(mye ™ rde,
Onr e RE Lo
(2.1a)
In /it
Cier = = R0 pompemorga 1 [ promesergq,
2r 0 In Jarer
(2.1b)

in these tormulas n = {(n,. n,, n,) are real unit vectors, k = w/c
i~ the wave number associated with the frequency w (¢ being
the speed of light in racuo), dQ is the element of solid angle
generated by the unit vector n, and ¢'*' and +' "' are unit
hemispheres in n space defined as

(2.2a)
a™ont=1,  n, <0 (2.2b)

L'he constants muitiplying the integrals in Egs. (2.1) have
heen chosen so as to simplify subsequent formulas.

In the representation (2.1) the factors C't) and I)'*? have
the physical significance of {(generally complex) amplitudes
of homogeneous plane waves that propagate in different
directions either toward the scatterer [waves with ampli-
nedes £ and C7') or away from it [waves with amplitudes
o *vand D). However, they also have another physical
<iwnificance, which becomes evident when one examines the
hehavior of the total field far away from the scatterer. One
then finds, for example by the use of the principle of station-
ary phase.” that as the distance r of the field point from the
Nixed oripin 0in the souree region increases along any fixed
direction specified by any real unit vector u = (v, u,, u,.),

,tkr ikr

Cira) ~ O~y ! + D’ as kr » o,

(2.3)

where the upper or the lower signs are taken on the right-
hand side according to whether the field point r = ruis
located in the half-space #* or /7, i.e..according to whether
. > Oorw, <.

The formula (2.3) expresses the far field in each ot the two
hadl spaces on either side of the scatterer as a sum of a
comnvergmg and o diverging spherical wave, with complex
mphitades C and D' tsee Fig. 2). This result implies
th.a the antegrals in Egs. (2 1) that contain the (generally
venplexi spectral amplitudes (") represent a ticld that is

-\\s ~~.~-,\-. 7

o

a4 b Vet et tatotef tat "2t et ab, 'al sl 'al el ot
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incoming at infinity, whereas the integrals containing the
spectral amplitudes [t represent a field that is outgoing at
infinity.”

We will assume that the scatterer is linear, ie.. that the
outgoing field depends linearly on the incoming field. Con-
sequently the (' amplitudes and the 1) amplitudes will be
coupled by a relation of the form!"

Din) = - [ Sin, n)C(n")1dyY, (2.4)
where C and D are the column vectors
o D'*'n)
com={" ™ML pm =P 250
"(n) D't

and Sis. for cach pair of arguments nand n', a 2 X 2 matrix.
Written out more explicitly, Eq. (2.4) gives

Himy = — {”m.\"' “tn, n ) (nd

- , S ) OO, (2.6a)
D) =~ I S e mdey

- Js' (n,0') " (ade,  (2.6b)

with

", m)

Wt )
Sin ) = S (n,n’)
S "'(n, n)

NEA .
S '1n.n)]‘ 2.7)

From the significance of the quantities '*' and D'*’ as
complex amplitudes of waves that propagate either toward
or away from the scatterer, and recalling the definitions (2.2}
of the domains of integration in Eqgs. (2.6), it is clear that the
four elements of the 2 X 2 matrix (2.2) are defined only for
the following ranges of the 2 components of the unit vectors
nandn”:

S, n.>0. n’ >0, (2.8a)
S on, >0, 0 <0, (2.8h)
¢ ewe” ; )
L ‘
“)\\\ v u//:(“
ENUTRS RURANTTR

SCAYTERER

R R

Fig. 2. The tar fields i the halt spaces 7 and # on etther side ol
the scatterer
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S 'm0, <0, n/>0, (2.8¢)
S"Vm.w): n, <0, nS <o (2.8d)

It will be useful at this point to make a contact with the
usual S matrix of potential scattering. In the theory of
potential scattering the expression for the far field, which
corresponds to expression (2.3), would be written in the torm

Tk ik
. \ : . ¢
Uirmb~Faw " + R o askr s, (29)
r r
and one expresses the relation between the complex ampli-
tudes of the vutgoing and incoming waves in the following
form, which corresponds to Eq. (2.4):

Fim) = -] Sn, n)F (~n)deY, (2.10)

"

where the integration extends over the whole unit sphere
senerated by the unit vector n° |ef. Ref. 11, Egs. (20) and
2.

It is clear that #(n. n) and S{n, n’) are essentially the
same quantities, both being continuous matrices whose ele-
ments are labeled by pairs of real unit vectors n and n’.
However, in contrast with 8'(n, n’), each element of S(n, n’)
i~ itself a matrix, arising trom the partition of &(n, n’) into
four separate contributions [Eqs. (2.7)]. Such partition is
advantageous when the field in each of the two half-spaces
# and /' is represented in the form of an angular spec-
trum of plane waves.

Forlater purposes we recall some general properties of the
usual scattering matrix 80, n'). It is well known that when
the scatterer is dielectric (i.e., lossless), &' is unitary, i.e., it
obeys the relations [cf. Ref. 11, Egs. (24) and (29)]

J A*n, n )&, n")di! = A(n’ - n"), (2.11a)

[ &', n)d*(n”, n)dQ = A(n’ — n"), (2.11h)

where the asterisk denotes the complex conjugate and the
integrations extend over the unit sphere generated by the
unit vector . Further, A(n’ — n”) 18 the “spherical” Dirac
delta tunction, defined by the formula

B = 1) — ")

Al -n") = .
lsin #')

(2.12)

where (07, ¢y and (47 "} are the spherical polar -vordinates
of the unit vectors 0’ and n”, respectively, and 4 is the usual
one dimensional Dirac delta function.

The & matrix also obeys the reciprocity relation [Ref. 11,
g (28]

A-n'. - nr=dnn). (2.1

We show in Appendix B that when the incident field is a

plane wave.

_nk-n..-r

("'(r) = tm, = 1), (2.14)

the tactors Fy and F- in the asvmptotic approximation (2.9)
of the total field tincident + scattered) are given by

M. Nieto-Vesperinas and K. Wolf

Zn .
F(n) = ) A, n,), (2.15a)
th
k¥
£.n) = — . A(n + n,). (2.10h)
) ik

3. THE GENERALIZED TRANSMISSION AND
REFLECTION COEFFICIENTS

We will now show that the tour elements of the partitioned S
matrix that we introduced through s, (2.6) have a simple
interpretation,

Suppose that a monochromatic plane wave of unit ampli-
tude and direction of propagation specified by a real unit
vector n, i.e.,

1) = o™

3.1
{with time periodic factor exp(—twt) not shown), is incident
upon the scatterer. It then follows from Eqs. (2.15), (2.9),
and (2.3) that

C'H'(n) = - 2.," Aln - n,). (3.2a)
R
2r
D'ty =" S, ny). (3.2b)

ik

the upper or fower signs being taken on the left-hand sides of
these formulas according to whether i, - 0. Now the second
integra) on the right hand sides of Egs. (2.1) represents the
outgoing field, {9'(r; n,) say, i.e., the field that behaves as a
diverging spherical wave at infinity. Hence it follows, on
making use of Eq. (3.2b), that when the plane wave given by
Eq. (3.1) is incident upon the scattering object

l’“'"(r;n(,=j &(n, n)e*™Td whenre £, (13a)

n

=I S, n)e* ™ d whenr o #' (33b)

where o' ' and o' are the hemispheres defined by Fgs.
(2.2).

The formulas (3.:3) represent the outgoing field in each of
the two half spaces £ and #* in the form of an angular
spectrum ol plane waves, with (generally complex) ampli-
tudes &'(n, ny) that propagate away from the scatterer in
directions specified by unit vectors n. When the & compo
nent, ng., of the unit propagation vector n, of the incident
wive is positive 3 (n, ng) clearly has the physical signiticance
of a generalized transmission coeffreient, tta, ny say, when
n, = 0 and of a generalized reflection cocfficiont, rin, ng)
say, when n. < O, for incrdence from the half-space i (see
Fig. 3). Recalling expressions (2.8a) and (2.8h). we see that
these coetficients are precisely two of the clements of the
partitioned S matrix (2.7, viz,,

tin.n,) S tnong), n.>0, n, > (3.4a)

rin,n,) N noag, no< 0w, > (34
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tnngt- S, ng) sinng S nng)
n
~2 2
nC
_to- —
rinng) - S tning) rinng- 8 Ynong

—_———

Fig. 3. lllustrating the significance of the elements of the parti-
tioned N matrix as generalized transmission and reflection coeffi-
cients

Similarly the quantities
rm,my) =S " '(n.n,). n, <0, ny <0, (3.4¢)
ptn,ny) S, ny), n,>0, n, <0 (3.4d)

have the physical significance of a generalized transmission
coctfictent and a generalized reflection cocfficient, respec-
vvely, forincidenee from the half space 1t (see Fig. 3).

It tollows that in terms of these generalized transmission
and reflection coetficients, the partitioned S8 matrix (2.7)
may be expressed in the form

(3.5)

Stn. ) ___[r(n.n ) pln,n )]'

rin, n’) rin, n’)

[1 15 to be noted that in view of the relation (2.13), the
generalized transmission and reflection coefficients obey the
reciprocity relations

{-n’.-n)=r(nn’), (3.6a)
Ai-n’ - n) = nn'), (3.6b)
pi—n’.~mn) = pin,n), (3.6¢)
ri=n’.—n)=rin.n). (3.6d)

I scems worthwhile to point out that our definition of the
weneralized transmission and reflection coefficients depends
on the chotee of the 2 axis, Tt is possible for a transmission
corthicient defined with respect to a particular 2 direction to
become a reflection cocfticient, and vice versa, when the 2
direction as chosen differently.  However, in many situa-
tions ot practical imterest a particular direction is distin-
suished from all other directions, and 1t is then natural to
choose the 2 axis along this special direction.  Examples
mclude stratiticd  media, inhomaogeneous  plane-parallel
plates.and rough planar surtaces . Scattering from bodies of
srhatrary shape in the presence of planar phase-conjugate
mirrors also belongs i this category

4. GENERALIZED STOKES RELATIONS

W bthe iterpretation of the clements of the partitioned 8§
rrattoy that we st discussed. we ase new ina position to

LNa 'J‘J‘

I L S U R AT, Ny ? ._\ NN Y
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formulate certain generalized Stokes relations. For this
purpose we first separate in the integral that expresses the
unitary condition (2.11a) of &'(n, n’) the contributions from
the hemispheres ¢~) and ¢'*', defined by Egs. (2.2):

j £*(n, n’)$(n, n")dQ + J F*(n, n )8 (n, n")dQ

+
ot

=An' -n"). (4.1)

If we chose the unit vectors n’ and n” to have positive z
components, i.e., n,” > Gand n.” > 0, and recall the physical
significance of 8(n, n’) and #(n, n”) discussed in Section 3,
we obtain at once from Eq. (4.1) the following relation:

I r*{n,n’)r(n, n")dQ + [ t*(n, n’)t(n, n")dQ

+
'

=A4A(m" - n") (42a)

Next let us choose the unit vectorsn” and n” with n.” < 0 and
n.” > (. The formula (4.1) then gives, if we also use Eqgs.
(3.4),

J 1‘(n.n’)r(n.n”)dS2+J ptn.n’it(n, n")de = Q.

23}
a

(4.2h)

In a similar way we obtain with the choice n,” > 0, n,” <0

'
o

J r*(m,n)r(n, n")dQ + I t*(n,n)p(n, n")dQ = O,
(4.2¢)

and, with the choice n,” <0, n.” <0,
I *(n,n)7(n, n")dQ + I p*(m, n)p(n, n”HdQ

=AM - n”). 4.2d)

One can readily verify that the four relations (4.2) are
equivalent to the following matrix equation, which expresses
the unitarity condition (2.11a) in terms of our partitioned 8§
matrix in a familiar form:

’ S'n. n)8(n, n")dQ = IA(n' — n"). (4.3)

Here 8t is the Hermitian adjoint of S and I is the identity
matrix.

In a similar manner that led to the relations (4.2) one can
derive from the second unitarity condition (2.11h) of S(n, n")
the following four relations:

{ p(n’.n)p‘{n".n)dSl+{ tin’, nit*(n", nidi2

B
in

=An - n"), (L4a)

It

I rin’.nlp®in”, nmdQ + ‘ rin . aittn”, md
(1.4h)
’ s T’ mdy + , tHn', nirtim’, ndy =0,

4. 4¢)
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rin’, m)r*(n”, n)d

(1

', mr*n”, n)ds + ]

= A(n" —n”). (4.4d)

‘The relations (4.4) may readily be shown to be equivalent
to the following matrix equation, which expresses the second
unitary condition (2.1b) in terms of our partitioned S ma-
trix:

f S’ n)S'(n”, n)dQ = IA(n’, n”). 4.5)

The formulas (4.2) and (4.4) may be regarded as general-
izations of the Stokes reciprocity relations (1.1). We verify
in Section 5 that they reduce to Egs. (1.1) in the special case
considered by Stokes.

Of the eight relations (4.2) and (4.4) only two are actually
independent of each other. To see this let us first apply the
reciprocity relations (3.6a) and (3.6¢) to Eq. (4.4a) and take
the complex conjugate of the resulting equation. This gives

{ p*(—n, — n’)p(—n, - n”)dQ?

+ j *(—n, ~ n)r(~n, ~ n")dl = A(n" — n”). (4.6)
If we now change the variables by lettingn -+ —n,n’ - » —n’,
and n” + —n", the relation (4.6) becomes

r*(n, n’)r(n, n")dQ

ol

J p*(n,n)p(n, n")dQ + J

=Aln' —n”), (4.7)

which is the relation (4.2d). In a strictly similar manner one
can show, with the help of the reciprocity relations (3.6), that
qs. (4.4b), (4.4c), and (4.4d) are equivalent to Eqgs. (4.2¢),
t4.2b), and (4.2a), respectively. Hence if we take the reci-
procity relations (3.6) into account, the set of the four equa-
tions (4.2) contains the same information as the set (4.4).
We may, therfore, confine our attention from now on to the
set (4.2) only.

Since the two half-spaces /- and #?* play the same role in
the present theory, it is clear that from any of the generalized
Stokes relations that we just derived one will obtain a valid
relation through the simultaneous transformations

M esg! ), (4.8a)
teer, (4.8h)
perr. (4.8¢)

T'wo formulas that transform into each other in this way may
be said to be dual of each other. Clearly Eqgs. (4.2a) and
(4.2d) form a dual pair, and so do Eqgs. (4.2b) and (4.2¢).
Hence there are essentially onlv two independent relations
of the type that we are considering, which we may take to he
Eqs. (4.2a) and (4.2b). The other six relations may be ob-
tained from them by the use of reciprocity and duality.

5. AN EXAMPLE: STOKES RELATIONS FOR
STRATIFIED DIELECTRIC MEDIA
SURROUNDED BY FREE SPACE

We will illustrate the use of the general relations (4.2a) and
(£.2h) by applying them to the interaction of a plane mono-
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chromatic electromagnetic wave with a stratified dieleetric
medium.

Consider a stratified diclectric medium that occupies the
strip 0 £ 2 < L, and let N = N(2) be the (real) refractive-
index function of the medium. We assume that the strati-
fied medium is surrounded by free space; hence N(z2) = 1
when 2 < 0 and when z > L. We assume further that the
incident electromagnetic wave is linearly polarized, with its
electric field either in the plane of incidence (I'M wave) or
perpendicular to it (TE wave). As is well known [Ref. 12,
Sec. 1.6.1] the state of polarization of either of these two
waves (modes) does not change on interaction with the strat-
ified medium; and an incident wave of any state of polariza-
tion may be expressed as a linear combination of these two
modes, which, moreover, are independent of each other
when they interact with the stratified medium.

A. Consequences of Eq. (4.2a)

Suppose first that the wave is incident upon the stratified
medium from the half-space z <0, in a direction specified by
a unit vector n’(n,’ > 0), and let n.{r’) and n,(n’) be the unit
vectors in the direction of propagation of the reflected and
the transmitted waves, respectively [Fig. 4(a)]. The func-
tional dependences of n, and of n, on n” are given by the laws
of reflection and refraction, respectively, for stratified media
(Ref. 12, Secs. 1.6.1 and 1.6.3). Since there is only one
reflected and one transmitted plane wave, the generalized
reflection and transmission coefficients will evidently be of
the form

r(n, n’) = r(n’)Aln — n,(n’)] {5.1a)
and
t(n, ') = in’)A[n ~ n(n")], (5.1h)

where r and f are the usual reflection and transmission coef-
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Fig. 4 Hustrating the notation relating to the derivation ot the
Stokes relations for stratified dielectric medin
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ncents, respectively, for incidence for the half-space 2 < 0.
[t us consider the first term on the teft hand side o ithe
generahized Stokes relation (4.2a). It we use Eq. (5.1a) we

hive

rtonnoria’ n"de

= rrnirn A - n O fAln - s Mde O

et et e and 107, ¢ ) be the spherical polar angles ol
e st vectors L 0’ and n”, with the polar axis being taken
v The positive £ direction. Then we have, according to
the law of retlection.

nant o g — 0T, 2R | R I TR N YRS |

ad g2y becomes

“inoniirin’, nde

“tinirinT) Aln - nm))Aln — nmM)lde. GOob
conterral on the right-hand side mayv be evaluated at once
tevse of FgooCirot Appendix Cand the fact that n, <.

"has dives

Aln - nom Al - nan”idQ = Alein) — n(n”)].
(5 5y
vooeeand the detiition © 70 o she Tspheneal” delta
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r*(n, n’irin, n")dQ

"

B = (x = 07)]dy’ ~
Isin ¢']

= r*(n'ir(n") ¢ 51D

In a similar way one may evaluate the second integral on
the right -hand side of Eq. (5.16), also making use of the fact
that withm’ - (', &) n.(@') = {x — 0, ). One then readily
findx that

’ p*(m, M (n, n")dQ

Ja

MO 07 = 1)l = ")

. (5.18)
sin o]

= p*(n’)l{n")
On substituting from Fgs. (5.17) and (5.18) into the general-
zed Stokes relation (4.2h), integrating both sides of the
equation over the unit sphere generated by the unit vector n’
=, ), and making use of {q. (5.3), we find that

*(n,”)r(n”) + p*(n,")(n") =0, (5.19)

where n,” - n.{n”) is the unit vector along the direction of
the reflected wave when the incident wave propagates in the
direction specified by the unit vector n” (n,” > 0).
It in Eq. (5.19) we make use of the reciprocity relation
(0.14) and write n’ in place of n”, we obtain the formula
t*(~n,Yr(n’) + p*(n,)t(n') = 0. (5.20)
There are other forms in which the relations (5.19) and
(5.20) can be expressed. For example, since the unit vectors
n’ and —n," make the same angle with the z axis, t{(—n,’) =
t{n’). For the same reason p(n,) = p(—n’). Making use of
these relations in Eq. (5.20), we obtain the formula

£*(n)r(n’) + Lp*(~n’) = 0. (5.21)
This formula is another Stokes relation for stratified diclec-
tric media and is of a form well known in the theory of
dielectric films (Ref. 2, p. [73).
The relations (5.21) and (5.15) recently played an impor-
tant role in the theory of correction of distortions by the
technigue of phase conjugation. !

APPENDIX A: DERIVATION OF A FORMAL
ASYMPTOTIC APPROXIMATION

We begin by recalling that under very general conditions any
solution V(r), valid throughout the whole srace, of the
Helmboltz equation

VR FRVIR = 0 (AD)

may be expressed in the form of an angular spectrim of
homogeneous plane waves, all with the same wave number &,
that propagate in all possible directionst

Vie) = f atmye*erdq, (A2)
The complex spectral amplitude function a(n) can be de

nved from the knowledge of Vr) by the inversion formula
JRet 13, g (810
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a(n) =

-

k'.’ . k4y ) .
. lim ] dK ] Virje Kord%,  (AD)
(2aY ¢ -r0

The asymptotic behavior of V(ru) as kr » = in the direc-
tion of a real unit vector u may be obtained by the use of Egs.
(2.1) and formula (2.3) or, somewhat more directly, from a
mathematical lemma due to Jones.!* ‘The result is

2” (,l"’l o ikr

Viru) ~ alu) ~a(—u) askr =, (A4)

th r r

Let us now apply these results to the case when V(r) is a

plane wave of unit amplitude that propagates in the direc-
tion of & unit vector n,;;

Vir) = o*™", (AD)

To determine the angular spectrum amplitude function atn)
of this field we first note that, when V(r) is given by Eq. (A5),
the Fourier transform that appears in Eq.(A3) becomes

[ Vel Brrdir = ’ explithn, — Kn) - rld’r

= (2x)'%""(km, — Kn), (A6)
where 8% is, of course, the three-dimensional Dirac delta
function. On substituting from Eq. (A6) into Eq. (A3) we
find thay ¢(n) is pow given by the formula

a(n) = k* lim (A7)

e 40

Iy
[ 5™ (km, ~ Kn)dK.
To evaluate the integral on the right-hand side of Eq. (A7)
we make use of the representation of the three-dimensional
Dirac delta function in spherical polar coordinates.” One
then finds at once that

S kn, — Kn) = (1/k9)A(n = n otk — K),  (A8)

where A is defined by Eq. (2.12) and stk ~ K) is the one-
dimensional Dirac delta function.  On substituting from Eq.
{AB) into Eq. (A7) and carrying out the trivial integration
with respect to K, we find that the angular spectrum ampli-
tude function of the plane-wave field is simply

ain) = A(n —n,). (AY)

Finally, on substituting from Egs. (A5) and (A9) into the
asymptotic formula (A4) we obtain the formal asymptotic
approximation

k
ihngr P2 e
[ ~

i
- A+ ny) ‘ ] askr s,
ik r

[A(n —n)"
(A10)

It is of interest to note the form of the angular spectrum
representation of a plane wave. 1t is clear on comparing the
right hand sides of Egs. (A10Y and 2.3 that for the plane
wave defined by Fq. (AD)

”,’" Atn - {Alla)
tR

C'tm) =~ n,.

*)
DYy = 7 (Allh)

Aln —~
th

n,).

On taking in (Kq. 2.0 U'te) = exptikng - £) and on substitat.
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ing for the C and D coefficients the expressions {(All), we
find that

In R~

e = ] A(n - n)e*™rdQ + I _An - n, e’ rdQ,
(Al2a)

In #*:

oo -I RYL IR WLV J A(n - nyetrda,

ﬂ‘

(Al2b)

One can verify by direct evaluations of the integrals on the
right-hand sides of these equations that these formulas hold

[ A(n -~ n')A(n —n")dQ = -
4x)

Isin '

Vol. 3, No. 12/December 1986/J. Opt. Soc. Am. A 2045

27 o(m.ny). (B6)
ik

The formulas (B6) and (B4b) are Eqgs. (2.15) of the text.

Fi(n) =

APPENDIX C: DERIVATION OF THE
FORMULA (,, Aln - n')A(n — n”)}dQ = Aln’ — n”
We have, according to the definition (2.12) of the “spherical”
Dirac delta function

i = 1)y - )

. (1)
fwin 0]

Aln~n') =
where (#, ¢) and (8, ¢’) are the spherical polar angles of the
unit vectors n and n’, respectively. We have a similar ex-
pression for A(n — n”). Hence it follows that

[' " o — 0:),6(',‘_;'_{_)‘2@: 8")8(p — ¢”) sin 8dedg. (C2)
o Jo [sin 6 )

throughout a wider domain than indicated here; in fact, each
of the two Eqs. (A12) is a valid representation of the plane
wave exp(—itkny - r) throughout the whole space.

APPENDIX B: DERIVATION OF FORMULAS
{2.15)

Suppose that the field incident upon the scatterer is a plane
wave of unit amplitude that propagates in the direction of a
unit vector ng:

Uy = o™ (B1)

The total field (incident + scattered) in the far zone is given
by a formula of the form

tkr

Utrn) ~ ¢*™" + A(n, n,) p—r— askr = =, (B2)

where A(n, ng) is the scattering amplitude. If we suhstitut.e
in Eq. (B2) for expltkn, - r) its formal asymptotic approxi-

mation given hy formula (A10), the expression (B2) for
{ '(rn) acquires the form (2.9), viz.,

(,xle' C‘lkf

Uirm) ~ Fy(n)~ — 4+ Fy(n) o askr -»=, (B

r

where
Fin) = z’r A(n — ny) + A(n, n), (B4a)
ih

Fam =~ 3;’ Atn +n,). (Bab)

l

The expression (B4a) may readily be expressed in terms of

the & matrix. ‘To do so, we substitute from Eqs. (B4) into
the formula (2.10) that may be regarded as a definition of the
S matrix. We then find, atier trivial calculation, that

9
Atn.n,) = “_: [#(n. n,) — Aln ~ n,)). (B5)
I

On comparing Egs. (BH) and (B4a) we see at once that

o ‘y h Y
SRR

- - --' "l
ATl

R
RN

Now for 0 < # < =, Isin 8] = sin 8, and Eq. (C2) therefore
reduces to

J A(n —n)A(n — n")dQ J & - A)6(8 — 07)do
(4r) t

)

2
X ] e — ¢ 10y = ¢")de. (C3)
{

)

By an elementary property of the Dirac delta function {Ref.
12, App. 1V, Eq. (12)] the first integral on the right-hand side
is equal to A0’ — 0”) and the second to 8(¢” — ¢”). Using
these facts, Eq. (C2) reduces to

MO = 08" =€) gy
Isin @'l

[ A(n —n)A(n —n")}dQ =
Jidr)
or, recalling again the definition of the “spherical” Dirac
delta function {see Eq. (C1)},

[ A{n —n)A(n —n”)dQ = A(n' - n"). (C5)
4=
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Radiance theorem with partially coherent light
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(Received 20 January 1986 ; revision recerved 30 July 1946)

Abstract. The transmission of a genceralized radiance across a planar boundary
separating two homogeneous media is considered. It is assumed that the optical
field remains continuous at the interface and reflection is neglected. A result 1s
obtained which may be regarded as a generalization of the conventional radiance
theorem for fields of any state of coherence. This result differs from the
conventional theorem by a factor that depends, in general, both on the optical
intensity and on the degree of coherence of the field. However, over a wide range
of circumstances the generalized radiance theorem is shown to be in good
agreement with the conventional theorem.

1. Introduction
One of the basic principles of conventional radiometry [1] is the so-called
radiance (or brightness) theorem that pertains, in its most general form, to the
relationship between the radiance of an object and the radiance of its image formed
by any specular optical system.t Within the frumework of linear theory, an
arbitrarily complicated specular optical system may be considered simply as being
composed of a sequence of uniform media separated by sharp boundaries. The
conventional radiance theorem then follows directly from the phenomenological
. laws that govern the transmission of the radiance through a uniform medium and
across a boundary separating two uniform media with different indices of refraction.
The propagation of the conventional radiance is governed, under general
circumstances, by the equation of radiative transfer ([ 2], chapter 1, equation (47)). It
implies that in a uniforn. medium (that does not contain sources or absorbers) the
radiance function B, (r, s) at some frequency o, measured in the direction specified
by the unit vector s, remains invariant on the line in the direction s through the point
. represented by the vector 1o Ina number of recent publications (see, for example,
[3 8], the validity of the equation of radiative transfer has been investigated in a
(statistically) homogencous medium  with scalar ticlds of arbitrary states of
. coherence. The discussion has also been extended inte the domain of clectro-
magnetic ields both within the framework of classical |9, 10] and quantized [ 11, 12]

wave theories.

t A specular optical systemv in this context is one that does not contain diffusely
transmitting (or retlecting) surfaces,

R )
. N N
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The transformation of the radiance across a sharp boundary has, however,
received considerably less attention. Although the reflection and refraction of wave
fields at boundaries have been extensively studied, no work is known to the author
that deals specifically with the transmission of the radiance associated with a
fluctuating optical field through a medium discontinuity surface. For this reason we
concentrate in this paper on eaxamining the conventional radiance theorem and its
range of validity with parually coherent light at a single planar boundary between -
two homogeneous media.
In the present paper we will adopt a relatively simple and straightforward
approach that is based on the scalar theory of light. The fundamental assumption, as -
is customary in physical optics, is that the (monochromatic) optical ticld remains
continuous across the interface. Nonetheless, the method emploved takes into

NI e - x xvr.
SLLEL @ RS IS s

account some interesting physical phenomena such as the conversion of evanescent
waves into propagating plane waves. Moreover, it offers several valuable clues to a
future improvement of the analysis.

2. Radiance theorem of conventional radiometry

We begin by briefly recalling the phenomenological form of the radiance theorem
as it 1s traditionally encountered in radiometry. Conventional radiometry Jeais with
the problem of energy transport at some temporal frequency w. With reference to
tigurc 1, the conventional radiance theorem at a single refracting surface may be
expressed in the form [14]

B,(r,s,) B,(r,s,)
A (1)
ny ny

where B and B, are the values of the radiance on the two sides of the interface (the
explicit o) dependence is omitted), n, and n; are the refractive indices of the two
uniform media, and r denotes the position vector of an element dg of the boundary.
Further, it is important to note that in the conventional radiance theorem (1) §, and
$, are unit vectors that specify the path of a geometrical light ray across the surface
clement. The effects of retlection have been neglected in the derivation of equation

H.

7N \
/,/’,/?% do  d5e,
57/f/d.5?7

Figure 1. Iustration of the notation relating to the radiance theorem of conventional
radtometry.

1 The propagation of generahized radiance functions (that pertain to fields of any state of
coherence) in lens systems has been studied in [4} and (8] on the basis of the usual Fourer
optics approsimations. Also, a rather general (one-dimensionaly analvsis of the propagation of .
‘ a generalized radunce through lenses was presented in [13] making use of asvmptotie
approximations (geometncal optics hmit) based on the prinaiple of the stanonary phase
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J

The radiance theorem (1) of conventional radiometry expresses merely the :
conservation of energy (at frequency o) that is incident on the element of da from the r

5

. differential solid angle dQ, around the direction 8, and emerges into the differential \
solid angle d€; around the direction §, (see figure 1). Therefore, it is clear that in
connection with the conventional radiance theorem, the size and direction of the
clement d€2; are directly determined by dQ, through Snell’s law of refraction. D

The losses due to reflection could be included in the conventional radiance !
theorem (1) by introducing a phenomenological coefhicient of reflection that depends
on both position and direction. Formally this would involve the use of the differential
scattering coefticient ([2], chapter 1, § 3) that appears in the conventional equation of

radiative transfer. Approximate values for the reflection coctheient could be ®
obtained, for example, from measurements or from the customary Fresnel equations
(see, for example, [15]). .
3
3. Generalized radiance and the radiance theorem with light of any state ?
of coherence A
In the context of fluctuating optical fields, geometrical optics cannot be used to by’
couple the energy transport on the two sides of the boundary. For this reason we will K
make the assumptions, common in physical optics [ 16], that the optical tield remains D
continuous in passing across the boundary surface and that on the surface it is given R
simply by the incident field. These assumptions are the cornerstones of the -
customary analysis of scalar-wave propagation in optical systems, where the various 2
elements such as lenses are represented by complex-amplitude transmission
functions. Clearly, the assumed field properties then also imply that reflection at the Y
interface has been neglected.t Since the continuity holds for each realization of the N
statistical ensemble (assumed to be stationary), the cross-spectral density function

(18] W (r,,r;) that characterizes the spatial coherence properties of the field at !
frequency w, will also be continuous across the boundary. '
For the sake of simplicity, we take the refracting surface separating the two ¢

. homogeneous media to be a plane = = constant, say 3 = gy, and consider a wavetield t
prepagating across the boundary into the half-space z > 2 (figure 2). We may ~
then associate with the field distribution in any transverse plane z = constant a ;
generalized radiance function defined by the expressiont ([19], equation (21)) L
Bip.s )=(k'2n)" cosl [H'(p V120, p 12pYexp( iks pdip, (2)

. :

where H(p+ 172p', p — ' 2p") denotes the cross-spectral density (at frequency o) of .
the light at the points p," = p + 1/2p" and p, = p — 1/2p" in that plane, and '
k= nky = n(w;e), (3 A

) tIn scalar optics one sometimes requires that both the optical field and its normal X

derivative remain continuous across a sharp boundary. These boundary conditions then give
nse also toa reflected field component. In particular, with a planar boundary and an incident s
plane wave, the resulting coefficients for reflection and refraction are the usual Fresnel

cquations for the case when the electric field is perpendicular to the plane of incidence A
tcompare, for example, [17], equations (5) and (6), and [15], equations (4.34) and (4.35)). {
T Since the Cartestan components s s, and s, of the umtyector s are related by the identin ®
o o8 s 1 only two of the three components are independent. We will, therefore, regand
the generalized radiance as being, i its direcuonal dependence, o function of the two-
hmensional transverse vector s == (s,,5,) and denote the radiance by Bop.s ). 9
.
.
\
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1372 A. T. Friberg
with n being the refractive index of the medium and ¢ the speed o Light jnovacaum, !
Further, in equation (2), # denotes the angle between the it vevorr 3 g e
positive s axis and § | is the projection of § (considered as o L ot w0ty \
onta the plime = constant, e b s - G v thonos (o vl J
-t
Finally, the integronon i cquation (2) extends throughoa the eren o
T = constant. T
.l
|} 3
- ]! 0
medium 1 megium 7 ¢
P i :
(ng) 1l [NZ,
] :
! £ .
L‘/ 1 s e LY
f T < (3.
Py o
- +
Pyl o
L]
=17, ‘
Figure 2. A planar boundary = = g, separating twa hemogencows media with teirinve :
indices n, and ny, respectively. n )
{J

I"

For later analysis it will be convenient to introduce an auviiiary quantioy, known
as the Wigner (distribution) tunction [20], that 1s closely relared o the <ommetricy)

v

definition of the generalized radiance given in equation (2) We ofine the Wigner t
function by the formula ' >
»
Z(p,f)-:Ju'(p+1/2p',p—1/2p’)cxp<~;f-p,.|1,. h &
where £ is a (real) two-dimensional vector. An analogous quannty. he booan he .
identitied [21] in some sense with the ‘local spatial-frequency spoctvan ol thy ju i, ;
has been studied extensively by Bastiaans {22,23] in ;.,mmc!ru.:l ard 1 ahicrent
physical optics. : \
On comparing cquations (2) und (4), we see at onee thay )
S . L
Buopos vtk 2my-voslizop rs ) i

a relation which is valid inany transverse plane < - concant, Weo v o i L e
particular, two planes displaced by a small distance ¢ trom ) e - 0 - Ly .
media 1 (refractive index ;) and 2 (index ny), and denaic e ',,- T U . :
functions in these planes by subscripts - and + | respoou ivowee ipane 15 akong ’

use of the facts that there are no backward-propagating b i cthociioi s nogleo g @
and that the cross-spectral density function B(g;, p,) reinams continuobs s fuss e y
boundary, we then obtain, in the limitas & — O, from equation: (3) 13000 o e :
IR Lo |"
Bo(p.sy V=m0 Mpis, 8, 18 (pow, ) "o 1:.
. L)

where ‘

cosO, yip. k,s- ’

Mipis, .8y, )= o K0S O

contl, g(p. k.8, | =

kY
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Radiance theorem with partially coherent light 1373

In this expression, &, = n,kgand &, = n,k, with kq = w/c, as before, and 8, and 0, are
the angles that the directions §; and s, make with the positive z axis.

Formula (6) may now be regarded as a generalization (at a planar boundary) of the
conventional radiance theorem (1) for optical wavefields of any state of coherence. ft
is, in essence, an identity that follows directly from the basic assumptions of physical
optics. Comparison of equations (1) and (6) reveals that the new relation (0) contains
an additional factor M(p;s,,,8,,), which is given by equation (7). This factor,
determined primarily by the state of coherence of the optical field at the boundary, is
a measure of the extent to which the present generalized result differs from the
conventional law connecting the radiances B, and B,. Through the cross-spectral
density appearing in the definition (4) of the Wigner function g, the factor M
depends, in general, both on the optical intensity and on the complex degree of
spatial coherence of the light at the interface. In fact, we see from equation (7) that,
apart from a purely geometrical part, the factor M is simply the ratio of the values
that the associated function x(p, f) assumes with the arguments §, = k,8,, and
f,=kis,,.

If the directional vectors s, and s, specify a geometrical ray path across the
boundary, then k,s8,, = &,8,, according to Snell’s law and the additional factor M
reduces 1n this case to the ratio cosfl,/cos ;. This result is a consequence of the
requirements that there is no reflected wave corresponding to a wave incident from
the direction 8, and that the transmitted wave in the direction $, matches the values
of the incident wave at the interface. The result holds separately for any incident-
wave direction and also implies that under the present assumptions energy is not
strictly conserved in passage across the surface. However, if the appropriate
reflection and transmission coefficients are included, the energy conservation for
plane waves is restored. Converselv, straightforward calculations using the general
results (6) and (7) show that if B (p,s,,) is zero except for some value s, then
B, (p,s;,) will also differ from zero only whén n,8,, = n,8;, in accordance with
geometrical optics.

We will emphasize, furthermore, that unlike in the conventional radiance
theorem (1), the variables s;, and 8,, in the generalized result expressed by
equations (6) and (7) are projections of quite arbitrary unit vectors that point towards
the half-space z > 0. This makes it possible to use the analytic properties of the
generalized radiance function B(p, s, ). It implies also, for example, that in the case
when n, <n,, the generalized radiance B, (p,s,,) may be non-zero even in the
domain n, /n; < |8, [ < 1, corresponding to angles @, larger than the critical angle of
total internal reflection. Physically, such a situation represents the phenomenon
where evanescent wav's are turned into homogeneous (propagating) waves by
refraction at the discontinuity.

4. Radiance theorem with quasi-homogeneous light
I.et us assume now that the optical field at the interface is quasi-homogeneous,
i.¢. one that is characterized by a cross-spectral density function of the form [24]

Wipy.p2)=1p, +p)/2)p; - P2 ) (8)

where I(p), the ()ptical intensity, is a ‘slow’ function of g and g(p), the complex
degree of spatial coherence [ 18], is a *fast’ function of p’ (see [24], §11). The Wigner
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function associated with such a beld distribution s readily tound from equation (4)
to be given by the expression
7(p. ) = (2m) I p)a(§), 9)
where
gty =1 2my {wprexp( - if-pyd (1t
15 the two-dimensional spatial Fourier transtorm of g(p’). On substituting trom
equation {9) into the general formula (7), we obtain the expression
costlyg(k;s, )
Mps,, s, )= —-F2L (11)
cosl, gk,S,,)
Equation (11) shows that for a quasi-homogencous field the factor W, which is absent
in the usual formula (1), is independent of the optical intensity of the light
distribution at the interface. Morcover, since g(p') is a ‘fast” tunction of p', its Fourter
transform g(f) i1s a *slow’ function of f. Conscquently for quasi-homogeneous light
Mp:s,,.8;,.) =1 and the generalized result (6) is seen to approximate the
conventional radiance theorem (1) with relatively good accuracy over a range of
directions s, and s, such that |8, ;[ 2 (S5, |. We note briefly also that for staustically
homogeneous hields equation (11) remains valid even when g(p’) is not a sharply
peaked function. For such ficlds the generalized result (6) is seen to depend on the
functional form of the complex degree of spatial coherence g(p').
Let us now assume, furthermore, that 7, <n, and that the complex degree of
spatial coherence of the light at the interface 1s given by the expression
sm klp
gp)= , (12)
kll’
where p' = |p']. This expression is characteristic of a Lambertian radiator, such as
blackbody radiation source [25]. Muaking use of the definition (2), the generalized
radiance B (p, s, ) 1s then found to be independent of the directional variable s, |,
and we will denote it by B,(p). On substituting from equation (12) into equation (11)
and making use of formula (6), we obtain the following result:

ny\? cos? 0, th’ (p) if0, <0
: S I <{.,
(nl) 1 —(m/n,) sin? 0, ofp7 M=

~0 if), >0,. (13)

ft

B.p.s, )

Here the angle 0,1 detined by the relation
sinbl,=ny n;. (14)
T'he tormula (13) shows thatat the hield at the iterface ts quasi-homogencous (or

strictly homogencous) with ats complex degree of spatial coherence given by
cquation (12), then there 1s 2 maximum angle, 6., beyond which no energy is

transmitted. ¥ According to equation (14, this angle is precisely the critical angle of

total mternad retlection,

Flhas result s a consequence of the fact that the spatial Founer transform of the
correlation function (127 s identically zero outside the domain [f| < k| (see [25], § 1), Henee
the peld imncident on the houndary contams no evanescent waves that could be turned by the
discontimmty surface into homogeneous waves propagating at angles larger than 0,
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Formula (13) also implies that even for angles less than the maximum angle 0.,
there is strictly speaking an angular dependence that is not present in the
conventional form (1) of the radiance theorem. “This angular dependence is a
consequence of the basic assumptions of physical optics (compare the discussion
tollowing equations (6) and (7)), and it is illustrated in figure 3 for two values of the
ratio ny ny . These curves, caleulated according to equation (13), indicate that the
ratio B, (p. s, )/ By (p) remains substantially constant over a relatively wide range of
angles 0, in agreement with the conventional radiance theorem. Such a behaviour
becomes even more dominant as the ratio #, n, is decreased. In the limit as n;, ",
approaches unity, there is no refracting surface and BB, (p, s, , ) becomes, of course,
wdentical to B, (p).

B. (?.521)180(?)
' i
I !
6 1 | ;
] ' |
| |
4 I !
I |
15 ) |
1 SR | :
{ !
2 e 11 | |
4 T T - i !
} |
O Rtk Bt e ~~v‘*’1*‘*—r—- ’_"Y"“L‘T—-“—"‘_—'
n 20" 40|° 60"‘ 80° 6,
418° 654° 8,

DY Bo(p) on the angle ¢ (sin (), = [s,, [) for two vajues of
the ratio ny iy namely 11 and 15, when the degree of ficld correlation at the interface
is mven by equation (12), The angle 0, denotes the maximum angle beyvond which no
energy is transmitted.

Furure 3. Dependence of B (p, s,

5. Summary and discussion

In this paper we studied the radiance theorem in the context of partially coherent
waves and considered only refraction at a planar interface separating two homo-
geneous media. The analvsis was carried out within the framework of the scalar
theory of light. Tt was based on the assumptions that the optical ticld remains
continuous across the boundary and that, as is customary in physical optics, the
effects of reflection can be neglected, The discontinuity may therefore be thought of
merely as a limitimg case of an optical element represented by an amplitude
transnussion function ((p), with 1(p) approaching unity. Since the transmission
tunction s independent of the properties of the incident hield, such as its direction of
propagation, this method typically leads to results that can be expected to hold only
in the paraxial regime.

Our analysis showed that the radiance theorem with light of any state of
coherence contains an additional factor, not present in the conventional radiance
theorem, that depends in general both on the optical intensity and on the complex
degree of spatial coherence of the light at the interface. For a quasi-homogencous
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ticld, this factor becomes indepersfent ot the opticai intenae s distethur on and s
given, dpart trom o geometrical part cost, o cosup o b Sy e v the ey

transtorm of the comples degree ot spatial coheronce evane o0 0 e g
f, ks, and £, = L5, respoctively (see equatior (00 0 L e L
clearly that the energy transmussion acress amedinin a0y Lo e

on the state ot coherence of the was chehd.

It was also shown that, tor blackbody radtation nebds che o o000

radiance theorem that we obtamed a8 i relatnely oo 0 o ot

comentional radiance theorem over asade range cfangiesowie o e

Light may be assumed to be o reasonable approsinan e Sooaoa - ) .
theorem with partially coherent hhtar hogorangles ol s oo oo -

use ot the full dlectromagnetic theory with proper o 0 o g L

conditions at the discontiminty sartace
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Invariance of the Spectrum of Light on Propagation

Emil Wolf'¥

Nepariment of Physics and Asironomy, Umiversity of Rochesier, Rochesier, New York 14627
(Received 27 January 1986)

The question 1s raised as to whether the normalized spectrum of {ight remains unchanged on
propagation through free space. It1s shown that for sources of a certain class that includes the usu-
al thermal sources. the normalized spectrum will, in general, depend on the location of the observa-
ton point unless the degree of spectral coherence of the light across the source obeys 8 certain scal-

ing law  Possible imphications of the analysis for astrophysics are mentioned

PaCh numbers 42 10 Mg. 07 65 ~b, 42 68 Mf

Measurements of the spectrum of light are generally
made some distance away from its sources and in
many cases. as for example in astronomy, they are
made exceedingly far away I is taken for granted that
the normalized spectral distribution of the light in-
Qident on a detector after propagation from the source
through free space 1s the same as that of the light in
the source region | will refer to this assumption as
the assumption of iavariance of the spectrum on prop-
aganon  This assumption, which is implicit in all of
spectroscopy ., does not appear to have been previously
questioned, probably because with ight from tradition-
al sources one has never encountered any problems
with 1t However, with the gradual development of
rather unconventional hight sources and with the rela-
uvely frequent discovenes of stellar objects of an un-
famihar kind. 1t 15 obviously desirable to understand
whether all such sources generate light whose spec-
trum 1s 1nvanant on propagation, and if so, what the
reasons for it are  Actually 1t 1s not difficult to con-
ceive of sources that generate hght whose spectrum is
not invariant on propagation. In this note I will shew
what are the charactenistics of a certain class of sources
that generate hight whose spectrum 1s invaniant, at least
in the far zone

From the standpoint of opucal coherence theory, in-
vanance of the spectrum of light on propagation from
conventional sources is a rather remarkable fact, as can
be seen from the following simple argument. Consid-
er an opucal field generaled by a siationary source in
free space The basic field vanable. say the electric
field strength at the space-ume point (r.r}), ‘nay be
represented by its complex analyuc signal'? E(r.1).
According 1o the Wiener-Khintchine theorem’ the
spectral density of the light at the point r is then
represented by the Founer transform.

Struwl= [ Toew s (1

of the autocorrelation function (known in the optical
context as the self-coherence function) of the field
vanable Itis defined as

ST T T T T T T e W "y

Fers)=(F te.VEtrr + 1)y, (2)
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where the angular brackets denote the ensemble aver-
age. Now the spectral density and the self-coherence
function are the ‘‘diagonal elements™ (r;=r,=1) of

two basic optical correlation functions, viz., the cross-
spectral density

W(r,,r;,w)=_f::l‘(r|.r;.f)e""df. (3
and the mutual coherence function

Flry e, 7)) (E*(r 0)E(n 1 4+ 7)), 4)

It is well known that both the mutual coherence func-
ton and the cross-spectral density obey precise prop-
agation laws. For example, in free space*

(Vf+k7)”'(r|,r2.w)=0 (I=).2) (5)
where
k=w/c, (6)

with ¢ being the speed of light «» vacuo and V; being
the Laplacian operator acting with respect to the vari-
able r,. Consequently, both the mutual coherence
function and the cross-spectral density and, in fact.
also their normalized values change appreciably on
propagation. For example, for a spatially incoherent
planar source W (r,. 1, w) and T(r,.r;,7) will be
essentially & correlated with respect 1o 1, and r; at the
source plane but will have nonzero values for widely
separated pairs of points which are sufficiently far awa
from the source. This is the essence of the well
known van Citteri-Zernike theorem (Ref 1, Sect
10.4.2). In physical terms, the correlation in the field
generated by a spatially incoherent source may be
shown to have its origin in the process of superposi-
tion. We thus have the following rather strange situa-
tion: The correlations of the light may change drasu-
cally on propagation; yet, under commonly occurring
circumstances, their (suitably normalized) diagonal
elements, which represent the spectrum of the light or
its Fourier transform, remain unchanged.

To obtain some insight into this problem we con-
sider light generated by a very simple model source.
namely, a planar source occupying a finite domain 1) of

© 1985 The Amecrican Physical Society
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a plane z =0 and radiating into the half space - > 0.
which has the same spectral distribution S$'*'(w) al
each source point P(p) and whose degree of spectral
coherence’ u'%(p,. p>.w) is statisucally homogene-
ous. i.e.. has the functional form u'"(p,~p,. w)
The cross-spectral density of the light across the
source plane is then given by

W(o,(Pl-Pz"")

-=¢(p])f(p;)S‘O'(w)p(o'(pg"p,,w), (Wh]

where e{p)=1 or 0 according to whether the point
P(p} 1s located within or outside the source area D in
the plane - =0

We will aiso assume that at each effective frequency
w present in the source spectrum, the linear dimen-
sions of the source are much larger than the spectral
correlation length [the effective width & of |u'%(p",
w)|). Sources of this kind belong to the class of so-
called quasthomogeneous sources.® which have been ex-
tensively studied 1n coherence theory In recent years
Most of the usual thermal sources are of this kind

The radiant intensity J_(u), 1 e . the rate at which
energy 1s radiated at frequency o per unit solid angle
around a direction specified by a unit vector u, is given

by the expression {¢f. Ref 6 Eq. (4.8)]
Jtut = k245" () 3" (hu_ w)coste %

In this tormula, 4 1s the areu of the source,

1 'J-M”H(I'-w)‘ - p'd.“)' 9)

-~ thi
(f w R
H 2 )

) =

is the two-dimensional spatial Fourner transform of the
degree of spectral coherence. u_ is the transverse par
of the unit vector u. 1¢e. the component of u (con-
sidered as a two-dimensional vector) perpendicular to
the - axis, and 6 1s the angle between the u and the -
directions (see Fig. 1). Evidently the normalized spec-
tral density $'*°'(u, w! at a point in the far zone, in
the direction specified by the unit vector u, is given by

S (uw) =S )/ 1,00 dw (10)

5

ht
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source I | o

e 3 ’
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On substituting Eq. (8) into Eq. (10) we obtain for the
normalized spectrum in the far zone the expression

K2SOwia' " hu L w)

Sy w)=
fh28 9w i " hyw)dw

(b

It 1s clear from Eq. (11) that the normalized spe.-
trum of the light depends on the direction u. 1.e .1t 1
in general not invariant throughout the far zonce
However, it is seen at once from Eq. {11} that 1t will
be invariant throughout the far zone if the Foune:
transform of the degree of spectral coherence of the
light in the source plane is the product of a funcuon of
frequency and a function of direction, i.e . 1t 15 of the
form

VR, w) = Flw)H (u ) (o
In this case Eq. (11) reduces 1o
AW Fw)
O Fwide

S*="(u, w) ~ DRV

and the expression on the right is independent of the
direction u

I will now show that the condition {12) has some in-
teresting implications, which foffow from the fact th
u'? is a correlation coefficient. Before doing this we
note that since v is a vnit vector, ju_. < 1 Howeve:
we will now assume that the factorization conditio -
(12) holds for all two-dimensional vectors u
< |y, < o). This assumption will be trivialiv satos
fied if the degree of speciral coherence u'' tp .o ' is
at each effective temporal frequency w. band himics
in the spatial frequency plane 10 a circle of radius -
about the origin. in more phvsical terms this conditi -
means that 1'% (p’.w) does not vary appreciabhy ov,
distances of the order of the wavelength A= 2~
With this being understood let us take the Four o
transform of Eq. (12). We then find at once the

w0 w)
-F(w)fﬁ(u;)exp(/ku,~p')df(Au_1 (i

ie.,
w'p ) =kiF(w)H (hp),

(1%

where H is, of course, the two-dimensional toure:
transform of H. Since u'%(p'.w) is a correlsion
efficient it has the value unity when p = 0,1 ¢ .

w00 w)=1. for all w.
and hence Eq. (15) implies that
KF(w)re= [H(0)])

Since the left-hand side of Eg (171 depends orn the
frequency but the nght-hand side 1s independent of vt
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each side must be a constant (g say) and consequently
f(w)ﬂaf'/\‘:. (18)

Two important conclusions follow at once from
these tesults [ we subsutute Eq. (18) into Eq (13)
we ohlain the following expression for the normalized
spectrum of ight in the far zone

$ W)
me'(w)dw '

Thiy formula shows that not only is the normalized
spectrum of the hight now the same throughout the far
7one. but 11 1s aiso equal 10 the normalized spectrum of
the hight at each source point

Next we subsutute Eq (18) into Eq (15) and set
We then obtain for 'Y’ the ex-

Sy wl=sS' " (W)= {19)

aff=h g =p- g,
pression
v lprmprw)=hlkip;~p)))
(hk=w/c). (20}

i ¢ the complex degree of speciral coherence is a
tunction of the vanable ¢ =k (p.-p,) only. We will
reter 16 BEq (20) as the scaling law. Obviously for 4
source that sansfies this law. the knowledge of the de-
grec of spectral coherence of the hght in the source
plane at any particular frequency w specifies it for all
fregquencies

The sceling law €200, which ensures that for sources
ol thie Class that we are considering the normalized
specirums of the hight 1s the same throughout the far
zonv and 15 equal to the normalized spectrum of the
gt at each source point [Eq (19)], is the main result
ol 1ms note

It s natural to inguire whether sources are known
that obes this scaling law  The answer is affirmative.
Many o the commonly occurring sources, including
blackbody suutces. ohey Lambert’s radiation law [Ref.
I Seat 481) It as known that all quasi-homo-
genvous Lambertian sources have the same degree of
spriird: coherence., viz

' tp—prw)=sinthlp,~p )/ klpy—pil, 21

which 15 seen to satisfy the scaling law (20). Accord-
ing to the preceding analysis such sources will generate
hght whose normalized spectrum s the same

throughout the far zone and is equal to the normalized
spectrum at each source point  This fact 1s undoubted-

ly largely responsible for the commonly held, but
nevertheless incorrect, belief that spectral invariance is
a general property of light.

This Letter has dealt with what is probably the sim-
plest problem regarding spectral invariance on prop-
agation. It would seem that some significant questions
in this area might be profitably studied. Among them
are the elucidation of the physical origin of the scaling
law, spectral properties of light from a broader class of
sources than considered here, the relation between the
scaling law and Mandel's results regarding cross-
spectrally pure light.®® and relativistic effects. Apph-
cations of the results to problems of astrophysics
might be of particular interest; at this stage one might
only speculate whether source correlations may
perhaps not give rise 10 differences between the spec-
trum of the emitted light and the spectrum of the
detected light that originates in some stellar sources.
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1t 1s shown that for ficlds produced by quasi-homogeneous sources, one of the generalized radiance functions introduced by
Walther reduces, 1n the asymptotic limit of large wave number, to a function that has all the basic properties of the radiance of
tradinonal radiometry. An explicit expression for this radiance is obtained in terms of the intensity distribution across the
source and the degree of spectral coherence of the source. The results provide a nigorous foundation for radiometry in free
space, on the basis of statistical wave theory
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Tt s shown that for hields produced by quasc-homogeneous sources, one of the generalized tadiance functions introduced by
Walther reduces, in the assmptone fumt of farge wase number. o a functon that bas all the basic propesties of the radiance of
taditonal radiometiy. An cxphot eapression for this radiance s obtued mtenms ob the mensity distaibution across the
soutee and the degree of speatral coherence ob the source. The sesults provide a nigorous foundation fos cachivmetey i liee

space. on the basis of staistical wave theory

We believe that the difficulties just mentioned
aruse because the previous investigations did not take
into account the fact that traditional radiometry deals
with sources that are spatially highly incoherent
(namely thermal sources) and that they generate radia-
tion whose effective wavelengths A are very small
compared with their linear dimensions 2. We show
in this note that when these facts are taken into ac-
count a consistent formulation of radiometry is ob-
tained on the basis of second-otder coheren.e theory,
at feast for sources and fields in free space. wiore spec-
ifically, we show that traditional radiometry correctly
describes the behavior of fields generated by planar
quasi-homogencous sources [ 11] in free space, in the
asymptatic limit as the wave number k = 2n/X = oo,

1. Introduction

During the last two decades several attempts have
heen made to elucidate the toundations of radiom-
etry, In particular several authors {1 5] proposed
expressions for the basic quantity of radiometry,
namely the (spectral) radiance, in terms of various
second-order correlation functions of the optical
hield. Although cach of the proposed expressions ex-
hibiis some of the well-kknown properties that are at-
tributed to the radiance in traditional radiometiy,
none of them possesses all of them, for sources and
fields of arbitrary state of coherence. In particular,
some of the proposed expressions for the radiance
can take on negative values, a result that contradicts
the physical meaning of radiance. More recently it
was shown [6] that it is not possible to define a radi-
ance for a planar source which depends linearly on a
second-arder correlation function of the source field
and which satisfies three basic postulates of radiom-
etry for every possihle state of coherence of the
source !

'Y In an interesting recent paper | 7] a definition of radiance
was proposed which depends non-linearly on a second-
order coreelation tunction of the source and which satis-
fies the three postulates. 1t appears, however, that this
radiance does not obey the radiometric law for the propa-
pation of radiance in free space.
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Allusions to the possibility that traditional radiometry
implies such restrictions have been made from time to

time [4b], |8 10].hut the appropriate mathematical
justification has not been previousty provided.
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2. Generalized radiance

L et us consuder a secondary soniree o oecupying a
fintte portion of the plane 2 - 0 mwd radiating into the
half-space = > 0, We assume that the sowree fluctug-
Tons are statisticably stationary, We will denote by p
the two-dimensional vector specilyine the location of
£satree point S and by r the three-dimensional veeton
specitving the lucation of a field point Pin the haif-
space 2 > 0L both referred to a fixed origin (Y in the
sotiree region (see fig. 1),

Let Wirpors ey be the crossspectral demanty ol the
tebd penerated by the sowree at two points Pyand £,
Pras R it the crossaspectral density may be
renresented i tenns ot g ensemble of monochromat-
2ot

Wowave dields T iy expt Eoall of the same

trequency eLoas 124

Wor orsoey = 7% ey Uty o)), (2.1
where the angular bracket on the tieht-hand side of
The

spuce depeadent part of each member of this enmsemble

e (2 1y denotes the averape over this ensemble.

chevs, throughout the half-space = > 0, the Helmholtz

Cviaten
(2.

(754 A Ur ey = 0,
where b - 2m

vohetves asoan outeolny sphene

“eand s the speed of light in vacuoand
dowave b mtingiy
this halfapace As s well known, such solutions can
he represented under very voneral conditions i the
form of an angular spectiim ot planie waves, Le, in the

fortnn I|)'l

Lirey fats vy ennths ey dy (2.3)
,“t
S
-— /' H
'/
-
oo 1L Hhustratine the notation,
RO

AT OIS EATA VN IR N, -r"'.r J-"'J'
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where

s 5 T8 s 0) (24
=41 iy |
< 4igs? D2 Wastoo L (2%

and the interration on the tzhchand side ot ego 2 3

Al A
plane ¢ s b 7y

extends over the whole s LI

In the above notation the complex verston ot the
generalized radiance tunction mtroduced by Walther
in yets. [4] may be written in the torm

FogroshE UM eyals vy onpliks r) (.64

For purpoees oo e discussion we waill express
H"(I', §) b teries ob b calues 11' K p.osy.whihon
takes on the sonrcey ane s O Hhis canreachily
done by making use ot the tace that the outgomy olu-
tion of the Hehmbobz e ormay be expressed in
terms of ity hourelay vaba « 7 po ey the plane

= () by the Ravieigh tormuta |

Ur. vy = [!,'(Ie_v)l"“'(p.r)‘13/), 2.7
1}

where R =r pand GER v)is the Green's tunctiom

G(R .1y 12070z expakRy R (2N}

with R - IR
(2. 7ymo eq (2.0) and interchanging the orders of

On substituting tor Hr ey trom ey

imtegration and averaging one readily finds that

”,‘U.,\) i expliks r)_[(i*(k. 1)

“

X B Mp syexp( ks, pydlp. (2.9)

)
where H :,' P shis the vencralized tadiance at a

point i the sousce plane, viz

RMp sy = 0 p pyats ) expliks, )

(2 10)

loveneal B otr sy is complex Henee it cannion
have the phvacal sipmticance ot tadianee. The same
Iy trae of the real part o B e s becauseas was
shownelsesmhiere [15] 50 cansometimes tuhe on nepae
However,

tive valiee. asshown et [ s el

part vieldothe correct vabie Tor the radiant imten-n

i one of the stamdard tormulas of naditonagd tadrom-

ety
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3. Generalized radiance of a field generated by a
quasi-homogeneous source

We wdl now spectalize the expressions £ 2.10) and
2 9) b the generalized radianee to the case when
the source is quasi-homogencous [11]. The degree of
spectral coherence of a quasi-homogencous source
depends on the two source variables P;.p>only
through the ditterence p, P . Consequently its
cross-spectral density has the form

“"”’(P,. P-.0)
= II(())‘ P l’)l 1/2”(0)(92‘,,)] l/zg(m(p2 P V).
(3.1)

where I'O( p vy represents the optical intensity at the
source point S and gf® (P,  P).v)is the degrec of
spectral coherence of the light at two source

points Sy and S, (with position vectors ppandp,
respectively ). Moreover, for sources of this class

1% p_py chanpes so slowly with the position (p)
across the source that it is essentially constant over
regions whose linear dinsensions are of the order of
the effective range of g p, #,.v).ic. of the
order of the spectial correlation length, 1, say, of the
light across the source. 1t is also assumed that the lin-
car dimensions of the source are large compared both
with /. and with the wavelength A = ¢/v.

Sources of this class include the usual thermal (e.g.
blackbody) sources for which 1, is of the order of the
wavelength, but other types of sources, for which I,
may be much greater than the wavelength, also belong
to this category. However, all quasi-homogeneous
sources may be said to be globally incoherent , since
the domain which they occupy is very much larger
than their (spectral) coherence area (= 1r13).

To determine the generalized radiance ot the field
produced by a quasi-homogencous source we proceed
as follows, We fiest set 2 = 0 ineq. (2.3) and then tuke
the Fourier inverse of the resulting Yormala, This gives
an expiession fora(s,, v) in terms of the boundary
values, U p. vy, of Ulr, vy in the plane z = 0. Next
we substitute this expression into eq. (2.10) and ob-
tain the following expression for the peneralized radi-
ance in the source plane:
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BNp.s)= (k/2m)2s, expliks, p)

xfw“”(p, plryexpl iks, p'yddp', (3.0)

o

where WO p_ p’, v} is the cross-spectral density of
the field in the source plane. In deriving ¢q. (3.2), eq.
(2.1) was used.

For a quasi-homogencous source W is given by
eq. (3.1), and if we use that equation the formula
(3.2) becomes

B Np.s)= (k/2m)2s, expliks, )

X 1O p,u)} 12 [ (10%p" v)] 1/250%(p" - p. 1)

[}
Xexp( iks;-p") d2p’. (3.3)

Since for a quasi-homogencous source the optical in-
tensity 7O, p) (with v fixed) remains sensibly con-
stant over regions whaose linear dimensions ae of the
order of the ¢ftective tange £ of g1 we may replace
the actor [1DP" )| 172 by (1P, v){ 172 in ey,
(3.3) and then take it outside the integral sign. More-
over, since the linear dimensions of a quasi-homoge-
neous source are much greater than [, the integration
over 0 may be taken over the whoie p "-plane without
introducing an appreciable error. Eq. (3.3) then gives,
with very high degree of accuracy, the following ex-
pression for '8 ,(,m(p. s):

BAP 5= k25,1O(p )R ks, v) . G4

Here £O)(f, v) is the two-dimensional Fourier trans-
form of gOp’ 1), ie.

EO(fvy=m) 2 [ gO(p vy exp( if ) 2"
(3.5

The tormuda (3.4) shows that the hehavior of the
generalized radiance of a guasi-homogeneous souree
ata point St the source plane, in a direchon speci-
ficd by the umit vector s, is determined by the value
of the aptical intensity at that point and hy the spa-
tial Fourier component libeled by the spatial-frequen-
cy vectar ks of the degree of spectral coherence of
the light in the source plane. This result was obtained
previously by a slightly ditferent argument in ref,
[11].eq. (A10).
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An expression for the eencralized vadiance of the
ticld generated by the quasi-homuosencous source at
anv point I the hall-space - ™ 0/is obuained at once
on substituting from eq. (3.4 into eq, 2.9y and one
finds that

B (r.s)= l\‘-’:\:_1:"“'(/\’51,l')('l’f‘(r.sl yoesp(ths-r), (3.0)

where

Coir.s,) - {(r'(R. Y 1P vy expliks - p) Ao (37

[

4. The asymptotic limit A -+ >« of the generalized
radiance for a field generated by a quasi-homogeneous
source

Let us now consider the behavior of the expres-
sioit (2,60 o very short wavelengths N o1 inore pre-
ciselv, determine its asymptotic limit as the wave
number & 2a/N = e For this pirpose we carry out
the ditfterentiastion on the vight-hand sule of eq. (2.8)
and substotinie the wesalbing expression for the Green's

Functeon GER oy neeq 03 TR We then tid g
Coaros = Clros vy % s (4.1
where

(':Htrvs';pf

{\': f/‘”" ) li\l\ll!\'tvl(R. p)‘ 42
T 2

(4.0)

EX|w|1[<?(:f- P A2, (4.3)

1

Nes ) ::T;fl“”(P. v)

and

MR Py R +yx p. (4.4)
Fach ot she dnreerals ineqs (4.2) and (4.3) de-
pends ik in twooways via the exponentil tenm
esplikegR gl andd via the & - dependence implicit in
the optical intensiny f'%p py 1p Ao/ m) Ak
hecares Lieeee aoed Laper the exponentiod teon will,
weevneral osallate more and more vapidly as the
potne S explores the donain of intepration. On the
other hand, tor apy rived value of & the optical in-

teisity cEa quasehomogenvons source vanies slow'!y
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with p chence s A-dependence may be neglected in
the asympiotic evalunion of (f‘ Pand (':,2’. as s clear
from the principle of stationary phase [16]. Mareover,
1Eis evident from compatison of the oxprossioss on
the vight-hand sides o eqy, 3.2 and £ 39 Hhar as
kv, (':,“’ 1s of higher order g 1k than (1,“ Henee
we anly need o conlimne our aitention to the asvimp-
tolic approximation to (':,' h

Straighttorward application of the prmciple ot
statiopy plase shows that o general, the imegral
incq. (4.2) has either one critical point of the st
kind or none at all. Let us et

roo(x, v o) roToxL v )

(4.5)

and et us denate by S the pot specitied by the po.
sition veeton

pl):’1 (Z/\'Z)SL. (4.06)

which muay readily be shown o0 the plane 2 - 0,

One finds that it S Hes within the sous - domain o,
it is the arit.cal point ot the tust kindand dhat it S,
lies autside . the intepval does not Jave o cnical
point ol the fiest Kind, Weowidd e ol b the
Se s simple peometocal sipnibican e

When S s focited witfon o the asymptotic ap
proximation ta C (r. s} s lound 1o be

Clros )~ 1™ (/s Loyespliks r)

avk e,

(4. 70)

When S 18 focated outside o, the asymptotic approx.
imation comes from contributions ol critical points
of the second kind, and is of higher order in 1% than
the expression on the right-hand side of eq. (4 7a)
and we may express this fuct (rakmg some liberty
with the interpretation of the asvmprotic svimbol) by
writing

("‘(f.S‘ y~ 0 Ak s en (4 ,4"’

On sabstituting fron eqs. (47 ) into eq. {3.6) and
wsing the Fact that " s 7eia when s weoament lies
outside of o we finally obtain the (ollow e awinp-
tohe approsunation to the sencrabized tadimee lung.
tow ol u teld renerated by a quast homoeeneons

SOUICE.
Bros)~B.(r.s) ask »o 4%y
where

AR{Y)

T N w e e e .
5 ™ aw - Tete
Rl S LI -

AN )

RS e
PP U W R SRS S

= h -,
>N, EAS A NS
L P P S

N

L)
w
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BAr.s)=kZs 1 (z/s, s, )8 Oks, v). (4.9)

Fhe asymptotic approximation (4.8) (4.9) to the
ceneralized radiance is the main result of this note.
We will show that it has a number ol important con-
SC(HIL‘HCCS.

First we note that according to traditional radiom
etry the rate at which energy crosses an area clement
dA per unit solid angle around a direction specified by
a real unit vector s is given by B (r.s)s*n d4, where n
is the unit normal to d4. In particular it follows from
this formula that the rate at which energy is radiated
into the far zone per unit solid angle around the s-
direction (i.e. the radiant intensity)'3 across any plane
z =z, = const. > O is given by

pusi=s, [ Brosydx dy. (4.10)

z

2y

On substituting from ¢q, (4.9) into eq. (4.10) we
readily ind that

p(s) = (2mk)2s2 FO0, v)g ks v), (4.11)
where
10, vy = (2m) 2f/“"( 0.v)d%. (4.12)

It we recall that s, = cos 8, where 0 is the angle that
the (real) s-direction makes with the normal to the
source plane, the right-hand side ot the formula (4.11)
is found to be precisely the expression for radiant in.
tensity from a quasi-homogencous source, calculated
by physical optics {ref. [11], eq. (4.8)].

It will be convenient for the purpose of subsequent
discussion to express the formula (4.9) in two alter-
native forms. First we rewrite it as

BAP.s)= k25 IS, v)E ks, vy 1S, T 0
= () WSy o
(4.13)

Further it tollows from elementary geometry that the

4 Rigorous justitication tor the identilication of the expres-
sion (4.10) with the radiant intensity of physical optics
requires somie additional considerations, which we plan to
present in another paper.

240

OPTICS COMMUNICATIONS

15 September 1985

sourced
/

'

Fig. 2. Hustrating the notation relating to the formulas (4.14).
So is the point in the source plane whose position vector Po

is given by eq. (4.6): it is the point of intersection with the
source plane of the line through the point P in the direction
of the real unit vector s,

point S, whose position vector is given by eq. (4.0),
is precisely the point at which the line through P in
the direction specificd by the unit vector s (again as-
sumed to be real), interseets the sowmee plane = = 0,
Hence eq. (4.13) implies that

B,(P.5)= k2. 'Oy ) §Oks; vy ifSEQ,
=0 irs€Q,
(4.14)

where £, denotes the solid angle gencrated by the
lines pointing from the source points to P (see fig. 2).

The first thiee terms on the right-hand side of the
first line of eq. (4.14) are evidently non-negative, So
is the last term g (ks |, v). since it is the Fourier
transtorm of a non-negative definite function [17].
Hence

BP.5)>0. (4.15)

let Iff,“’ denote the limiting value of B, when the spa-
tial argument (7 ov Py approaches the sonree plane

2 = 0. Sinee the optical intensity is zero at any pomt
P in that plane which is located ontside the sonrce
e o, we have from e, (4.13)

BMP.sy=0 ifPeo. (4.16)
Finally we sce at once from ¢q. (4.14) that
B(P.sy= BO(S,.5) (4.17)

This formula implies that B (P, s) is constant along
cach line in the half-space 2 >0,

[
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The tact that eq. (4.10), with B, given py ¢q. (4.9),
represents the radiant interisity as calculated trom
physical optics, as well as the results expressed by egs.
(4.15).(4.16) and (4.17), show that B, has all the
main properties attributed to radiance. We may,
theretore, conclude that traditional radiometry, with
the radiance given by eq. (4.9), correctly describes
the behavior of fields generated by guasi-homogencous
planar sources in free space, in the asvmptotic limit as
k=2nik » oo

Finally we wish to remark that aithough we derived
the expression (4.9) for the radiance from one partic-
ular definition of a generalized radiance function {m-
troduced in refs. [4]), we believe that the same ex-
pression will follow, in the asymptotic limit of large
wave number, from some of the other (non-equivalent)
definitions of generalized radiance functions, when
they are specialized to fields gencrated by quasi-homo.
geneous sources
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) Radiance functions that depend nonlinearly on the
- L
- cross-spectral density
*
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: Recently a new definition of radiance was proposed [1. Opt. Soe. Am. A 1, 556 (1984)) that depends nonlinearly on
. the cross-spectral density of the field and satisfies the three major postulates of traditional radiometry. We show
. that there are an infinite number of such radiance functions.  Their utility is discussed.
, 1t is well known that one of the main problems encountered
. : . . Wi(r, ryv r, dir = A (0 (ry, ). (2)
in the attempt to connect the theory of partial coherence with J:, (r1, r2 V)dn ey ! n(W)pn(ry
traditional radiometry! *is that there is no radiance function The eigenfunctions are orthonormal over the domain D
. . " - ¢ S e ; "
that depends linearly on the cross-spectral density of the field e € ew
. o . . - . ie.,
:{ and satisfies the three major postulates of traditional radi-
¢ ometry for planar sources of any state of coherence.*® More by 1) (e, w)d2E = 6 o
e . .. q ) , r= s '
< specifically, consider a planar source of finite area [) located n" m nm
in the plane 2 = 0 that emits light into the half-space z > 0. . . .
) . - . S al an egative. Expansion (1)
Let r be a twu-dimensiunal position vector in the plane 2z = and the elgenvql\losare real and nonn gative. Txp: .
O holds irrespective of whether the set of functions {¢, (r, v}l is
N 0, W(ry., ry, v) be the cross-spectral density in that plane, and . . o .
. s be a three-dimensional unit vector whose 2 component is complete in the Hilbert space of functions that are square
N A ' e . integrable over [1.8¢
- nonnegative. Friberg” showed that there is no radiance lnltg lt;ol' (7) tl:e following definition of radiance was pro-
: function B(r, 8, ) that satisfies the following four conditions nd' ' 1ne D
' for planar sources of any state of coherence: posed:
k\2 2
. , y )y =—1 cos expliks - ¥ )G (', r, d?r|
o th Bir, s, v) depends linearly on Wir,, r., ), Ber.s, ) (2, o j:, pt i
~ (I Rir.s.v) 2 vtorailrand s, )
> () HBir,s,v) = Gwhenr. D, ., . . r
- (V) cosf {1 Blr.s., exd?r = Jis. v) where (:(r’, r, »), the generating function, was given by
-~ —
. . . . . Gir',r,v)= r)Y Vv r'.eyo,*r, v 5)
o where cos ¥ = 8 - 2 and Jis, ¢) is the radiant intensity of L) = Xl )2".. V Aa()en (X% )da(E 1)
physical opties.  For example, Walther’s two definitions! 2 fail ind
to satisfy requirement tI1) for certain types of sources %6 ¢
: In an interesting recent paper? a new definition of radiance (r) = re 1 ()
- was introduced that (8) depends nonlinearly on Wir,. ry, v) Xh 0, rg )
, - . e
) and th) satisfies requirements (1) (1V) for sources of any state 5 jon () torces Bir. s. v be nonnegative: therefore
N of coherence. The purpase of this Communication is to show [‘,qua't on (4) .“rfc\'\..’ (r, } to be nonnegative: therefore
N . . ) . T . . condition (1) is fulfilied. Since
that the radiance function of Ref. 7 is not “inique in these re-
spects. By using the methods of Ref. 7 we will show that there Gir' r, ) =0, ri D, (7)
are an o mfitte munher of radianee Doy that sy ‘ ) . . N
v condittons t) and (bt above X . condition I e falfilled. By using Fas. (), G and (011t
) The cross spectral den<ity of the  ouree ean be represented o straghtforward matter to show that
by the Mercer expansion™ . )
Wiry v, ) = J G roedGey, roedd e, ()
) n
Wir e = 2 N e )b e ), n and it tollows from Egs. () and (%) that condition (IV) is
tulfilled tsee Ret. 7 for detailsy,
: where the o e, 0 ond N G0 e reaectively, the eeen- We will now show that for a given crossespectral density
) functions and the cijenvadunes of the Fredholm integral function there are an infimite number of generating funetions
: equation G oroeithat obey Egs o0 and (5% The corresponding ra
o
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diance functions obtained by using Kq. (49 waill theretore de-
pend nonlinearly on Wirg v, o). obey conditions (1 11V
and, in general, be differcnt tron the radhianee tunction of Ref.

Constder the expansion

Gl e o) = ) 2Y don (i, Ar, ), M e, p), (9)

oy N

where!'t

.\_.:‘\_;lamn“')‘z< . (10)
mon
coetow, ey satisfies Eqo (7). By using Egs. (9 and ) one
obtains

G*ir, r. )G, v, vidHr
it

=N Y G N W U Py, v). (1)
mon :

n

Fguation (1) can be rewritten as

Wirora o) = 3 3 A 0V, d, ey, v)d, e, e, (12)
non’

Fototlows from Kgs. (11, (12), and €3 that the generating
tur ien defined by K. 19 obeva Eg. (8) o and only if the
expanston cocfticients satisfy the sealed unitarity condition
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Therelare any radiance function of the form (1), where the
generating function ts of the form (9 and the coefficients
aoe pnequality (10V and Fy (140, depends nonlinearly on
the crossospectral density (n the source plone and satisfies
conderions 5 UVY. The radiance function of Ref. 7 cor-
re-xp«mds to the choice

aAma 1) = \“A'A\mr'A'v'j'Smu t14)
Another simple choice would be

ao sy A umexplroe e s th)

viore el oo, (e s read,

Vhe above result brings to mind two gquestions, First, of
Htae possible nophinear cadianee fanetions that are possible,
~rhere one vogn, the Hermitian one of Ref. 7 that s preter
abi Uinless one imposes additional phvsical restrictions on
the probiem. toe answer 1o this question s clearly no.

Second, are these nonlinear radhiance tunctions preferable
rothe two defimtions of Walther”  This 1s an open gquestion
s tume, however the following ponits are relevant. Fach
i Walther's radiance fandtions s nonnegative when the

B}

R SR LR R hnllm;{('m'uus Snee quasg homngvneuus

sources are globalby spatiiv ineoherem, Walther's radianee

tune tions behave properhy tor the tepes of sources fineoherent)
tor which tradgihional radiometes was developed.  Also, for
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certain tvpes of sources Walther's radiance functions obey,
approximately, the equation of radiative transter when they
propagate into the half space 2 > 0051 Sinee Wik, raom
propagates into the half-space z > 0 according to two linear
partial differential equations (the Helmholtz equations on the
variables rp and ro. respectively), the nonlinear radiance
functions may not propagate in this simple manner. Never
theless, the nonlinear radiance functions are interesting and
deserve further studv.
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